Neuron Kanban Cell Logical connective implementation [LCI]

Pages suppressed are under CDA.

Colin James III Ersatz Systems Machine Cognition, LLC Colorado Springs CO

Confidential and Proprietary Material © 1999-2012 Colin James III All rights.

Table of Contents, 1 of 2

U = Unpublished (48); P = Published (22)

Introduction

UP Neuron nomenclature

UP Neuron topology

Analysis

UP Analysis of logical gates in a Kanban

U Neuron compatible data

U The 16-outputs from

U [Topic suppressed]

U Input value i for

U LUTs as relevant truth and proof tables

U [Topic suppressed]

Design

UP Design of the Kanban cell neuron UP Hardware embodiment, example 1 U Software embodiment, example 2 P Petri net diagram of a unidirectional P Logical connectives are defined in the U Pairs of dibits (quadbits) describe UP Methodology for logical evaluation U Example of NOR and NAND connectives UP Example of pseudo self-timing U Bit path example 1 U Bit path example 2 U Mathematical conclusions from bit U Tabulation by % of

Table of Contents, 2 of 2

Design (continued)

U Inputs produce Kanban output

U Pseudo code for logical flow

U Dibits versus Quadbits

U LUTs as the relevant proof tables

Implementation

U Implementation of a Kanban cell

Patent Claims

P Published Claim

U What is CLAIMED:

Appendix: Truth tables, Tabulations, and Tools P Sixteen connectives defined by OR P Sixteen connectives defined by AND U Contrast between U Non-symmetrical connectives U Bit path tables of U Count of the same dibit U The most generic connective U Dibits of

U Dibits of only

Introduction

Published Neuron nomenclature

Neurons have an abstract design in logical gates of a Kanban cell. The nucleus is the process and feedback places as upper case kappa, K. A dendrite as input place is i; the axon as output place is lower case κ.

Published Neuron topology

The input i and output κ is in the form of blocks of four-bits (quadbits). A signal in quadbits contains two pairs of bits (dibits). A left dibit is named sinistro; and a right dibit is named dextro.

Analysis

Published Analysis of logical gates in a Kanban cell

The Kanban cell is deterministic and bivalent in that it operates on the basis of bit-value:

p as the AND place = 1001; q as the OR place = 1001.

- The quadbit 1001 is viewed as two dibits 10 . 01 for path and content Sinistro dibits 10. mean: "It is false that the left path is false."
 - Dextro dibits .01 mean: "It is true that the right content is true".
- This Kanban circuitry is assumed, and values of p and q other than 1001 are not optional or entertained.

The input value is i and the output value is κ.

From the formula (i AND p) OR q = κ , the only variable is i as (i AND 1001) OR 1001 = κ .

Design

Published Design of the Kanban cell neuron

This published diagram of a neuron does not work. The U places are a linear shift feedback register (LSFR), and the V places control the flow of U. A clock is absent, but implied for synchronization.

Preferred embodiment, Example 1: The published design of a neuron core in VHLD for an electrical circuit.

This published Kanban cell does not map a neuron core with feedback from Output to Input, *with* a tau place.

Confidential and Proprietary Material © 1999-2012 Colin James III All rights.

Petri Net diagram of a unidirectional Kanban cell

Places E and C are Entry and Collection; green square Process is AND; and orange diamond Feedback is OR.

These logical connectives are defined in the literature.

Connective	NTAU	AND	NIMP	LP	NIF	RP	XOR	OR
	Contradiction	Conjunction	Material non implication	Left projection	Converse non implication	Right projection	Exclusive disjunction	Inclusive disjunction
	falsehood	and, but, however	but not	p, proposition p	not but	q, proposition q	either or	or
Negation/ Opposites								
	Tautology	Alternative denial, non conjunction	Material implication	Left complement	Converse implication	Right complement	Equivalence, biconditional	Joint denial, non disjunction
	validity	not both and	implies, only if, if then	not p. negation of p	if	not q. negation of q	if and only if, just in case	neithernor
Connective	TAU	NAND	IMP	LC	IF	RC	EQV	NOR

Published methodology for logical evaluation is:

The formula evaluated is: (input AND process) OR feedback = output; for input and output, there are four dibit values of 00, 01, 10, 11.

Published example of pseudo self-timing: NAND and XOR are equal κ

The published Folded Feedback Kanban (FFK), with Tau replacing Feedback place, is a mistaken design, as based on bidirectional arcs between $I \rightarrow P$, $I \rightarrow F$, $F \rightarrow O$, and $P \rightarrow O$.

The two paths of direct exit and the two paths of indirect exit via *mistaken recycling wait* are:

No.	Direct paths	Indirect paths with wait
1, 2	$I \to P \to O \to$	$\mathrm{I} \rightarrow \mathrm{P} \rightarrow \mathrm{O} \rightarrow \mathrm{I} \rightarrow$
3,4	$I \to P \to F \to O \to$	$I \to P \to F \to O \to I \to$

Implementation

Patent Claims

Published claim:

... the totality of the apparatus of the invention is named Bi-Valent Neuron (BVN).

Appendix:

Truth tables, Tabulations, and Implementation Tools

Derivation of the 16-logical connectives in 4-bits (quadbits) by OR for logical arithmetic

```
NOT( p) = NOT( p OR p)
NOT( q) = NOT( q OR q)
```

p NOR q	≡ NOT(p OR q)				
p NAND q	≡ ((NOT(p)) OR (NOT(q)))				
p AND q	<pre>= (NOT((NOT(p)) OR (NOT(q))))</pre>				
p EQV q	= ((NOT(p OR q)) OR (NOT(NOT(p) OR NOT(q))))				
p XOR q	≡ (NOT((NOT(p OR q)) OR (NOT(NOT(p) OR NOT(q)))))				
p IMP q	≡ (NOT((NOT(p)) OR q))				
p NIMP q	≡ ((NOT(p))OR q)				
p IF q	≡ (p OR (NOT(q))				
p NIF q	≡ (NOT(p OR (NOT(q)))				
p RC q	≡ (NOT(NOT((NOT(p)) OR (NOT(q))) OR q))				
p RP q	≡ (NOT((NOT(p))OR(NOT(q)))OR q)				
p LC q	\equiv (((NOT(p OR q)) OR (NOT(NOT(p) OR NOT(q)))) OR q)				
p LP q	≡(NOT(((NOT(p OR q)) OR (NOT(NOT(p) OR NOT(q)))) OR q))				
p TAU q	≡ (((NOT(p)) OR (NOT(q))) OR q)				
p NTAU q	≡ (NOT(((NOT(p)) OR (NOT(q))) OR q))				
	Confidential and Duamistan, Matanial				

3/24/2012

Confidential and Proprietary Material © 1999-2012 Colin James III All rights.

p OR q \equiv (NOT((NOT(p))AND(NOT(q))) ((NOT(p)) AND (NOT(q))) pNORq ≡ ((NOT (p AND (NOT (q)))) AND (NOT ((NOT (p)) AND q))) p EQV q Ξ $p XOR q \equiv (NOT((NOT(pAND(NOT(q))))AND(NOT((NOT(p))ANDq))))$ p IMP q \equiv (NOT(pAND(NOT(q)))) (p AND(NOT(q))) pNIMPq ≡ \equiv (NOT((NOT(p AND q)) AND (NOT(q)))) pIFq ((NOT(p AND q)) AND (NOT(q))) p NIF q Ξ p LC q ((NOT(p AND q)) AND (NOT(q))) Ξ \equiv (NOT((NOT(p AND q)) AND (NOT(q)))) pLPq p RC q \equiv (NOT(((pAND(NOT(q)))AND(NOT((NOT(p))AND(q)))AND(NOT(q))) (((pAND(NOT(q)))AND(NOT((NOT(p))AND(q)))AND(NOT(q))) p RP q Ξ $p TAU q \equiv (NOT((p AND q) AND (NOT(q))))$ pNTAUq ≡ ((pAND q)AND (NOT(q)))

Derivation of the 16-logical connectives in 4-bits (quadbits) by AND for logical arithmetic

NOT(p) = NOT(p AND p)

NOT(q) = NOT(q AND q)

 $p \text{ NAND } q \equiv (\text{ NOT} (p \text{ AND } q))$