(TR AN AR O A A
US0059268 15A

A -
United States Patent 9 (1] Patent Number: 5,926,815
James, II1 451 Date of Patent: Jul. 20, 1999
[54] BINARY SORT ACCESS METHOD AND 5204967 A10U3 AMDSHONE +oremrmmrmnmsimrmereis | TU5/800

APPARATUS 5274805 121993 Perpuson et al, oo 1077

5,307 485 #1%M Bordonaro et al ..
[76] Inventor: J. Colin James, [IL 1613 Morning D, :i;ig? Jg{g‘: ;Mv:il e‘_:k“]-' al
Loveland, Colo, 80538-4410 L O L s
VORRB Sy ; 5557791 1996 Cheng etal. smesmemmommromennes TOTT
[21] Appl. No.: DB/988.665 OTHER PUBLICATIONS
[22] Filed: Dec. 11, 1997 Martin, Computer Databse Organization 2nd edition. Text
Book. pp. 351-374, 1975,
Related ULS. Application Data
Primary Examiner—Thomas G, Black
[(G3] Continuation-in-pant of application Mo, O8:507 567, Jal, 27, Assistant Examiner—Frantz Coby
1933, abandoned. Aftormey, Agent, or Firm—Ancel W, Lewis, Ir.
[51] I CLY e oo GiaF 1730 . .
: 57 ABSTRACT
TR o BT o ons) :
[58] Field of Searchoccommmmmmmississisesion T8 The binary sort access method and apparatus makes use of
a binary search to show where an item of data not found
[56] References Cited should be placed in sorted order within a list in a table in
I e PATENT sp— memory or in a file on a storage device. The method includes
U.5. PATENT DOCUMENTS building the list structure when items of data are inserted in
1587057 61971 AMSHODE occieaciimsniionnss MV172.5 and maintained in sorted order in a table in memory or in a
3611316 101971 Woodm MO1T25 file on a storage device. When no blank table entry is
3L 51974 Cordi etal, . 34011725 available items of data are moved (o make room for the next
3UIL61Z 11976 Stevens et al. .. e MUOATLS - gyeceeding item of data. A partially filled or filled list of
:i::é:;; jﬁigg fm;m:lng :Wﬂ:: items may be rewritten again to provide one or more blank
34, - - 1 - . 36N e .
5060.146 101991 Chang et al " 640900 table entries between each item of data,
5021493 6/1992 Fergusoneeommsmmssscsmsrs 70717

3193207 31993 Vander Vegt et al.occcvneeiene. 39HB00

8§ Claims, 4 Drawing Sheets

11

21

25

BLANK

31

41

43

91

61

U.S. Patent

1TE=

Jul. 20, 1999 Sheet 1 of 4 5,926,815
L COMPUTER
PROCESSOR
|
P

18 | MEMORY

FiG.: T

1 1 1

B B B |

11 11 11

B B B

21 21 21

B 25 25

31 31 BLANK

B B 31

41 41 41

B 43 43

51 51 51

B B B

61 61 61
FI1G.2 FIG.S F/G. 4

1
B

11
B

21

25

27

31

41

43

51

B
61

Fil, O

U.S. Patent Jul. 20, 1999 Sheet 2 of 4 5,926,815
{

SORTED_LIST_MINIMUM = 1; SORTED_LIST_MAXIMUM = 100;
BLANK_POINTER = 0; DIM SORTED_LIST(SORTED_LIST_MAXIMUM)
FOR INDEX = SORTED_LIST_MINIMUM TO SORTED_LIST_MAXIMUM STEP 2

SORTED_LIST(INDEX) = INDEX; SORTED_LIST(INDEX + 1) = 0
NEXT INDEX

I
[SEARCH_BEGIN |

LOWER_INDEX<=—_ NO .
PPER_INDEX

MID_POINTER = LOWER_INDEX +
INT{(UPPER_INDEX — LOWER_INDEX)/2)

ORTED_LIS
(MID_POINTER) =
BLANK_POINTER

MID_POINTER = MID_POINTER — 1]
| ==

TEST_POINTER =
MID_POINTER

L

TEST_POINTER

SORTED_LIST (LOWER_INDEX) = MID_POINTER
= SEARCH_ITEM

(_LINSERTED; STOP) SORTED_LIST

(MID_POINTER) =
SEARCH_ITE

, YES
(FOUND; NO INSERT: STOP)

SORTED_LIST
(MID_POINTER) >
SEARCH_ITEM

UPPER_INDEX =
1 MID_POINTER - 1

NO
- ['LOWER_INDEX = MID_POINTER + 1|

[SEARCH_END]}=

[RGTATE_AND*:INSERTiﬂEGINI FIG.6

U.S. Patent

Jul. 20, 1999 Sheet 3 of 4

| ROTATE_AND_INSERT_BEGIN |

ROTATE_

ROTATE_LEFT = UPPER_INDEX

RIGHT = LOWER_INDEX

ROTATE_LEFT
> SORTED_LIST_MAXIMUM AND
OTATE_RIGHT < SORTED_LIST_MAXIMU

ROTATE_LEFT= ROTATE_LEFT = 1

(]I;DTATE_LEFT) RO

LANK_POINTER

SORTED_LIST(ROTATE_RIGHT) ROTATE_RIGHT=
= SEARCH_ITEM ROTATE_RIGHT +1

|)

ROTATED
(INSERTED: STOP)

ORTED_LIS
(ROTATE_RIGHT) =
BLANK_POINTER

5,926,815

= SEARCH_ITEM

SORTED_LIST (ROTATE_RIGHT)

'I

INEERTED. §TDP)

1RDTATE_AND _INSERT_END |

1

REWRITE_AND_INSERT_BEGIN

Filts 4

U.S. Patent Jul. 20, 1999 Sheet 4 of 4 5,926,815

[REWRITE_AND_INSERT_BEGIN |

NEW_LIST_MAXIMUM= SORTED_LIST_MAXIMUM +
SORTED_LIST_MAXIMUM + 2

DIM NEW_LIST(SORTED_LIST_MAXIMUM)
NEX_INDX =0

OLD_INDX >=
SORTED_LIST_MINIMUM AND
OLD_INDX =<
UPPER_INDEX

!

NEW_INDX = NEW_INDX
NEW_LIST(NEW_INDX)
SEARCH_ITEM
NEW_INDX = NEW_INDX + 1
NEW_LIST(NEW_INDX) =
BLANK_POINTER

i+

SORTED_LIST
(OLD_INDX) <>
BLANK_POINTER

OLD_INDX >=
NEW_INDX = NEW_INDX + 1 L"’%"E:?::‘.E‘é’i‘ii‘ 4
NEW_LIST(NEW_INDX) = SORTED LIST MAXI—
SORTED_LIST(OLD_INDX) =

NEW_INDX = NEW_INDX + 1
NEW_LIST(NEW_INDX) =
BLANK_POINTER

MUM

]
OLD_INDX = OLD_INDX + 1 NO

SORTED_LIST

» Y)

-
»/DIM SORTED_LIST(OLD_INDX)]

(OLD_INDX) <>
BLANK_POINTER

NEW_INDX = NEW_INDX + 1
NEW_LIST(NEW_INDX) =
NO SORTED_LIST(OLD_INDX)

INDX>=1

e NEW_INDX = NEW_INDX + 1
ANSLDIEID&DX- > NEW_LIST(NEW_INDX) =
BLANK_POINTER
YES . .
SURTED_LISTEIMD:&:} = 1
NEW_LIST(INDX [OLD_INDX = OLD_INDX + 1 |
y
[INDX = INDX + 1] =

T
REWRITE_AND_INSERT_END FiG.&

5.926.815

1

BINARY SORT ACCESS METHOD AND
APPARATUS

This is a continuation-in-part of application Ser. No.
S07.967 filed Jul. 27, 1995 now abandoned.

TECHNICAL FIELD

The present invention relates 1o a method of and apparatus
for accessing items of data in a sorted list

BACKGROUND ART

A portion of the disclosure of this patent document
contains material which is subject to copyright protection,
The copyright owner has no objection 1o the facsimile
reproduction by anyone of the patent document or the patent
diselosure, as it appears in the Patent and Trademark Office
patent files or records, but otherwise reserves all copyrights
whatsoever.

In a binary search. the conventional method used s 1o
determine the midpoint of a sorled list of items of data or a
subsct of a list by calculating the sum of the extreme pointers
and then dividing by two. In a conventional binary search
half of the remaining list is eliminated from the search by
each comparison, When the searched item is not found, the
pointers cross to indicate where that searched item would be
inserted to be in sorted order. Given N items in a Llist, N2
items on average must be physically moved o make room
for a new ilem to be inserted in sorted order.

DISCLOSURE OF THE INVENTION

In accordance with the present invention there is the
binary sort access method and apparatus wherein one or
mawe blank table entries are interspersed between each item
of data in a sorted list in a table in memory or in a file on a
slorage device, and a new item of data is added by insertion
in the blank table entries to build the list. If a blank table
entry is not available at the position desired. then the old
items of data are searched until a blank entry is found, into
which the next old item of data is moved respectively and
consecutively until a blank table entry is available for the
new item of data. The list is rewritten with one or more blank
table entries inferspersed between each item of data after a
selected number of new insertions,

BRIEF DESCRIPTION OF THE DRAWINGS

Details of this invention are described in connection with
the accompanying drawings in which like parts bear similar
reference numerals in which:

FIG. 1 is a block diagram showing parts of a general
purpose computer and associated apparatus by which the
method of the present invention is carried out,

FIG 2 is a table representing a series of entries of data
with a blank table entry between each item of data in a sorted
list in the table in memory or in a file on a storage device.

FIG. 3 is a table of entries of data in which two additional
items of data have been added to the sorted st in the table
in memory or in a file on a storage device,

FICh. 4 is & table representing a series of entries of data in
which one entry of data has been moved and replaced by a
blank table entry.

FIG, 5 is a table of entries of data in which an additional
item of data has been added to the sorted list,

FIGi. 6 is the first portion of the program flow charl for
camrying out the binary sort access method according to the
present invention,

FIGi. 7 is another portion of the program flow chart.

1

15

X

b

V)

s

4

45

a0

55

Tn

L%

2
FIGi. 8 is another portion of the program fow chart.

DETAILED DESCRIPTION OF THE
INVENTION

Eeferring now to FIG, 1, a general purpose computer 140
is shown having computer processor 12, a svstem bus 14,
and a memory L6, The memory contains index tables 18
used in carrying out the binary sort access method according
to the present invention, Auxiliary devices shown coupled to
the bus 14 are a disc drive 20, monitor 22, kevboard 24 and
printer 26.

The first step of the present invention involves physically
placing or putting items of data in sorted order with one or
more blank table entries interspersed between each item of
data, This is represented in FIG, 2 wherein there is shown a
table representing entries with items of data in a sorted list
in locations in memory or in a file on a storage device
identified by numerals 1. 21, 31, 41. 51, and 61 with a blank
table entry “B” interspersed between each item of data, I is
understood there may be a plurality of blank table entries
instead of a single blank table entry between items of data,

The second step involves building the list of items by
adding items of data in order in the space occupied by the
hlank table entries in memory or in a file on a storage device,
A binary search s performed to loeate the desired location
for insertion of each new item of data. If the desired location
is a blank table entry, the new item of data is inserted, This
step is represented in FIG. 3 wherein there is shown the table
of entries to which an item of data identified as numeral 25
has been added in order in the blank table entry B between
items 21 and 31, and item of data represented by numeral 43
has been added in order in the blank table entry between
iterns 41 and 51.

The third step involves attempling to inserl a new item of
data in order in the list and finding no space available, The
fact there is no space available is detected by keeping a
count of the items of data. When no space is available at the
desired insertion location. the blank table entry nearest the
desired insertion location is identified. the items of data
between the nearest blank table entry and the desired inser-
tion location are moved to make room for the new item of
data, and the new item of data is inseried at the desired
location,

In FIG, 4 there is shown the table of entries in which a
blank table entry 15 added betwesn item of data 25 and item
of data 31, and item of data 31 is moved below o the next
blank table entry so that item 27 subsequently may be
inseried in the table, as is shown in the able in FIG, 5, Al
any time after the first item of data is added or when the table
is filled, the table is rewritten to intersperse at least one blank
table entry between each item of data as is shown in FIG. 2.

Referring now to FIGS, 6. 7 and 8 there is shown the flow
chart for the program for carrying out the method. This chart
shows that according to the present invention a list of ilems
of data are placed in 4 sorted order in a table in memory or
in a file on a storage device, and at least one and possibly
more than one blank entry is interspersed between cach item
of data in memory 16 or in a file on a storage device such
as disc drive 20, Items of data may be successively added in
order In the space occupied by the blank table entries. When
there is no blank table entry available in the list of items, the
iterns of data are moved to form a blank table entry to make
rowom for the next item of data. At any time after the first item
is added until the blank entries become filled, the list of
items may be rewritten providing one or more blank table
entries between each item of data, This method shows that
the step of moving the items of data to form the blank table
entry includes the substep of finding the nearest blank table
entry to a desired insertion location and moving all table

5.926.815

3

entries between the nearest blank table entry and the desired
insertion location to form the blank table entry resulting in
opening up the blank table entry, As required. the method
and apparatus of the present invention are able (o rewrite all
or part of the list structures, This is very rapid because while
sequentially reading a sorted list once, the method and
apparatus of the present invention also writes the same List
with blank table entries inserted as necessary into memory
or into a file on a storage device,

In the preferred embodiment of the present invention. the
method includes the steps of counting the number of inser-
tions made between pairs of successive initial items of data
and rewriting the list when all blank entries between any pair
of-successive initial items of data are filled, The method is
optimized with initially placing items of data in the list with
eleven blank entries between each pair of items of data, and
rewtiting the list as soon as eleven insertions are made
between any palr of successive initial items of data,

In an alternative embodiment of the present invention, the
method includes the steps of counting the number of inser-
tions made after the List is initially written and rewriting the
list after a selected number of insertions, For example, the
method may count the insertions and rewrite the table when
the number of insertions equals the number of remaining
hlank entries.

The methed and apparatus of the present invention
reduces the average number of items that must be physically
moved to make room for a new item to be inserted in sorted
order from the prior art average of N/2 to an average of less
than one, The method and apparatus of the present invention
is ideally suited as an index searching and sorting method for
large, realstime applications such as those encountered in
databases accessed by Structured Query language (SQL)
which typically do not perform well with indexing schemes
using structures known in the art as binary trees or B-trees,
The present invention is a special case of such binary rees;
it is a binary tree of a single depth or unitary level which is
rewrilten with blank node entries when the tree becomes
full.

The program code lists are set forth in the attached
Appendices consisting of six pages.

Although the present invention has been described with a
certain degree of particularity, it is understood that the
present disclosure has been made by way of example and
that changes in details of structure may be made without
departing from the spirit thereof,

AFPENDIX A

rem Source code for BEAM in TrueBASIC ™
remn Copyright & 1992-1995 Colin Jumes I
e All Rights Beserved
begin beam__routine
rem set__up__hegin
Jen sorted_lisl_minumm = |
len sorredlist__maximim = 100
let blank__pointer = 0
clirn sorted lasy OO
for mdex = sorted__list_minimmam o
sored st maximum
slap I
Jet sortedlist] ndex) = nxiex
let sortedlist { index + 1 =10
nexl index
rem set__up_end
rem,__search_ begm
sl cursor 1,1
inguil e searched
let search,_itern = ilem__searched
let lower_index = sortedlisl_ minimuam
let wpper__index = sorted_ listmeax imem
let test_pointer = O

4

APPENDIX A-continued

let item} = "To Insert”
do while lower_inden <= upper__index
- et mald_ poanter = lower__mdax + inbl{ upper_index
= lower_index 2}
if sorted_list) mid_peinter) = Blank__pointer then
let_mid__pointer = mid_pointer - 1
end if
if nest_poimier = mid__podnter then

10 Jen morted_list lower__index) =
search,item
let item$ = "Inserted Ok"
I
end if
et best_poinner = mid_pointer
15 Al sorbed s mid_podnter) = search_ibem then
let itemd = "Found ok - - No hsert”
stop
elseif sorted list) micd__pointer) = search__item then
et upper__uxdex = mad__pointer - 1
elseif sorted list] mad_podnter) < sxarch item then
2 et lower_didex = mad_pomer + 1
el if
loop
rem search__end
redn redace il inser_begin
bet rodate lafl = upper index
bel rotate__gld = lower__mdex
5 while mtate__lefl = sorted_Hst__mamomnon and
retute_rght < somtedlist__smaxnnum
let rotate_left = rotate__left - 1
if sorted__list modase_ beft) = blank pointer then
Jen sortecl list rowmie_deft) = search__ivem
let item® = " Redwted and Inseried OF°
) slop
enid if
let potane__rght = rotase__rght = 1
if sored st { rotate__rght) = blank__pointer then
let sorted_List] rodatecglit) = search_itean
It item$ = “Rotated__and Inserted OK"
a5
end if
loop
rem modate__and imsert end
rem pewrite_and inmsert begin
let__pew_ list_maxunum
a0 w sortedlist_maximnm + sortedlist_
maximm + 2
din pew__listi sorsed_list. maximmam)
Jet mew_midx =0
for obl__mdx = somed gt miniowm e upperindex
A somed Hst? old _indx) <> bank_ pointer then
led mew _inedw = new _indx + |
43 let new_list] new_indxy
= womed__listf oid__indx)
let new_indx = mew_inds - |
let pew _Listi pew__indx’y = blank__pointer
end if
next old__inds
50 let pew_mddx = pew indx + |
let pew_listi new_indx) = search_itern
let pew__indx = pew__indx + 1
led pew_ Lt new__nwdx) = blank poimter
for old_indx = lower_index to sorted list mamimuen
il morted _list{ old__indx) <==blank__poanter then
55 ket mew__imdx = pew_indx 4 1
bet mew_ Dist{ pew_ sy
= gorted_Tist(old__indx)
let new__mdx = pew__inckx + 1
Bt new__list{ new_adn) = blank poanter
end if
B next old__indx

dim sorted_st] old i
for medx = 1 o okd_indx
let sorted listl meda) = pew list(uwdn)
pext indx
remn rewrile_aid imseriend
6% end hsam_routine

3,926,815

5

APPENDIX B

6

APPENDIX B-continued

et Source code for BSAM in TrueBASK ™
rem copyright € 1997, Colin James 111
remn All Rights Reserved
e sl Up SOM paranelers
library "execlib frc”
et n_lim_idx = 200000
let mcrement__step = 5000
let mam,_child = 11 pom nember of empty todes
letn lim = |+ n_ lim_ids rem oasmber of random kevs o be rested
et Jun_mmimus | o= o lim - 1
remn sel up random permutation array of iopat values
din T T
dim keysi 0}
mat recam 1 Lo lim_kdx)
for i= 1w o lin meioos_ 1
latrl_ =1
Rl i
for 1=n_lim_minus_| e 2 step —1
let jdx = INT] BRI} * 3} + 1
bet i =l 1)
bt £l 1) = 1l iclx)
bt rlf Wlimy =1
mert i
renn sar up sorl file paransiens
let rec_size =4
let file A% = "Adat"
let file_B% = "B.dar”
let file_C% = _d.du”
let zeros =NUMS(1} rem filler value is |
led minus_oned = WUMS(09 rem sentine] valoe 8 0
etz =0
letNl=1
let Jeft = |
let right = M1
open M1 wme tle A%, org byte, create newold, access outo,
TeCsiEe rec_ sire
for § =10 mum_child rem first record s 0011110111111
Bt Al mecord § ¥ mec_size + |
if j =01 then
write #1; minus__ooed

rens Bbyle TEEE munber formaat

elue
write #1: zernd

el if
next
close #l
ler pam_dtems = nl
lerix =0
rean main oop uaril ix -
ks

o lim__mirmas |

let i =dx 4 1
let v = numdd 11§ ix3)
reatl open fles
open U1: name file_AS, org byte, create newokd, access oulis,
open U2: name file_B%, org byte, create newold, access ouim,
Tecsize rec_size
Jet left = 1
let right = M1
kti=0
kij=0
rean__binary__search loop
-
let @ = TR { beft + cight) ¢ 23
Bl 1 record [(1 — 1) mec_size *
{ mumchald 4 1%+ 10
real W1: rech
if v§ < rec} then
Yer pight =1 - 1
whas
let beft =i+ |
end if
Joop uti] v = rech or lefl = righe
rem fest search resubis loop
do
rem dest i pech found ai {5, 0
if v§ = rec} then
exit ik
end if
let bit_ligoit = 0

¥l

0

35

45

50

A5

regn wsert rech at first node { nght, | pum child) = ©
for | =110 oum__child
set #l:mecord | right < 13 * rec__size *
¢ omuny child + 104+ [% ree_saze) + 10
read 41 rech
if rech = zerof then
sel M1 record ([nght = 1) = rec__size *
{ mum_child + L9 4§ [§ * rec_size) = 1)
write ¥1: v§
let nurn__iteos = numitems + 1
len B lumidt = 3
exit for
e if
nest j
if Bit__limit = | then
rem only one key in nodes of the record, so the mode
ren 15 aleady sorted
exit o
else
e uore than one key, so sort the nodes
rem ¢ L 1 ... nam child)
if bat__Timit <= num_ chikd then
e inserton son of podes using o
e sentine] recond
for i = 2 o hit_Limit
set M1 recond (O right =17 = rec_size
= el 41+ 01 ¥ P
gize} + 1)
resd #1: 1_rech
bt j=1
ik
sei #1 record [{ right - 1) *
rec_gie ® | num__child 4 1)) 4
(05— 1) " me_nize) - 1)
rend ¥1: rech
if rech = 1_reck then
ael #1: recond | | nght -
13 * pec__size * { num__
child +1) + { (] * rec_
BEe) + 1%
write #1: rech
lety=j-1
else
exit do
end if

set W1: recoed { rght - 1) *
rec siwe * | pum_ clikd - 19 4
(4]
* rec_gize) « 1)
write #1: 1_rech
next 1
enid if
if bie Lt == oam child then
axil do
el
rern empty nodes Glled in this recond, so
remn rewrite sorted Gle with empiy nodes
rem i all recoeds
let nd = num_jtems
let cowmter = O
far 1= 1 o man_iems
for 1= 0o num__child
set ¥l record { (i 10
rec_Bize * | pum_child + 173) 4
{4) " rec_sizeh + 1)
write §2: zerch
next i
next i
for i=1 tomnl
for 4= 0o numechild
set #lirecord ((i-1)*
rec_sie * | num_child +
L+ [* rec_size) + 1]
read #1: mech
if rec$ = rerod THEN
exir for

elae
ler couniter = counter + 1

3.926.815

7
AFPENDIX B-continued
set #1: recond
{ eoumter
=13 * rec_ size *
{ miarn chiki
+ 1+
write #2; recd
enl o
nexi |
nexl i
led nl = n2

led puom tems = nl
remn close files
close W]
close #2
ren renuame files
call Fxec_Renurne(file__ A%, file_C%)
call Exec_Renurne(fila_BE, file__AS)
unsave file_C§
exit do

end if

e if

rem ¢lose_files

chose #1

close #2
leop until i = o__lim__mims__|
end

What is claimed is:

1. A binary sort access method comprising the steps of:

placing a plurality of first items of data in a sorted order
inalist in a memory means with at least one blank entry
hetwesn each pair of suceessive first items of data,

building said list by adding items of data in order into said
blank entries.

counting said items of data added to said 1ist,

rewriting said list with at least one blank entry between
each pair of successive items when a selected number
of items of data have been counted,

performing a binary search to identify an insertion loca-
tion in said list at which to add an item of data,

detecting when no blank entry is available at said inser-
tion location,

finding said blank entry pearest said insertion location,

and

moving all items of data berween said blank entry and said

insertion location to form a blank entry ot said insertion
location,
2, The method as set forth in claim 1 wherein the step of
counting includes counting said items of data added between
ench pair of successive first items of data and detecting when
items of data have been added into all blank entries between
any pair of suecessive first items of data.
). The method as set forth in claim 2 wherein the step of
rewtiting is performed when items of data have been added
into all blank entries betwesn any pair of successive first
items of data,
4. A binary sort access method comprising the steps of:
placing a plurality of first items of data in a sorted order
in a listin a memory means with at least one blank enry
between each pair of successive first items of data,

performing a binary search o identify a location in the list
at which to add a new item of data in order,

adding the new item of data in order at the locaton when

a blank entry is available at the location,

detecting when no blank entry is available at the location,

finding the blank entry nearest the location,

10

A0

25

an

AL}

435

35

k]

8

moving all items of data between the blank entry and the
location to form a blank entry at the location, and
adding the new item of data,

building the list by successively adding new items of data
in order,

counting the new items of data added between each pair
of successive first items of data, and

rewriting the list with at least one blank entry between
each pair of successive items of data when new items
of data have been added into all blank entries between
any pair of successive first items of data,

5. A hinary sort access method comprising the steps of:

placing a plurality of first items of data in a sorted order
inalistin a memory means with at least one blank entry
between each pair of successive first items of data,

performing a binary search to identify a location in the list
at which to add a new item of data in order,

adding the new item of data in order at the location when
& blank entry is available at the location,

detecting when no blank entry is available at the location,

finding the blank entry nearest the location,

moving all items of data between the blank entry and the
location to form a blank entry at the location. and
adding the new item of data,

building the list by successively adding new items of data
in order,

counting the new items of data added to the list, and

rewriting the list with at least one blank entry between
each pair of successive items of data when a selected

number of new items of data have been added.
6. An apparatus for performing a hinary sort access

method comprising:

means for placing a plurality of first items of data in a
sorted order in a list with at least one bhlank entry
between each pair of successive first items of data,

means for building the list by adding items of data in order
into the blank entries,

means for counting the items of data added (o the list, and

means for rewriting the list with at least one blank entry
between each pair of successive items when a selected
number of items of data have been counted,

7. The apparatus as set forth in claim 6 including:

means for identifying an insertion location in the list at
which to add an item of data,

means for detecting when no blank entry is available at
the insertion location,

means for finding the blank entry nearest the insertion
location.

means for moving all items of data between the blank
entry and the insertion location to form a blank entry at
the insertion location,

& The apparatus as set forth in claim 7 wherein said

means for counting counts the items of data added between
each pair of successive first items of data, and

said means for rewriting rewrites said list when new items
of data have been added into all blank entries between
any pair of successive first jtems of data.

= L * L *

