
The S-O software approach differs from that of data driven software
because data is not directly a part of the object domain but ultimately is
a trivial subset of the subject domain. In S-O software there are no O-O
contracts or A-O promises, just the subject fully encapsulated within a
finished product which has business value as a strategic corporate asset.
 Disruptive Technology (DT) is defined as an innovation that will
potentially affect the way of doing business in the next 20 years. What
follows is that pure S-O software is an instance of emerging DT. LTT is
the S-O programming core of pSUM and produces software that is
portable, scalable, useable, and maintainable. Therefore the pSUM
factory is S-O software that qualifies as DT.
 Results pSUM meets the requirement of a factory to emit
software that is portable, scalable, useable, and maintainable. pSUM is
also fast in real time performance. The average transaction for SGL
makes only 14 accesses five tables. On a desktop computer with 2.4
GHz Pentium and all tables on one hard disk, pSUM performs 136 such
complex transactions per second or 8160 transactions per minute.
 A side product of the pSUM effort is the Software Development
Methodology [SDM] based on Mil-STD-498 and Business Object
Notation. A recent advance from SDM is the statistic that the time
consumed in collecting requirements is 10% of the total effort and thus
accurately predicts the time to completion of the project. An advance is
the delivery and acceptance of the user manual as the requirements
document before any code is implemented. A discovery is how to map
attributes, objects, classes, and clusters on a one to one basis directly
into columns, rows, tables, and views with constraints.
 In pSUM the static trigger of less than 50-lines of SQL code
reduces into an abstract form of Petri Net that is identical to the model of
the Kanban cell. What follows is that LTT is compatible mathematically
with just in time [JIT], flexible manufacturing systems [FMS], and
advanced planning and scheduling [APS].
 LTT applies to ERP and software development as follows:

[G/A] No ERP→ LTT Kanban JIT FMS APS LTT ←ERP [D/S]

 Where ERP or software development does not exist, to implement
LTT from the general or abstract level [G/A] to the detailed or specific
level [D/S] is top down from APS to Kanban.
 Where ERP or software development does exist, to implement
LTT from the detailed or specific level [D/S] to the general or abstract
level [G/A] is bottom up from Kanban to APS.

Software Factory: Recent Advances in Disruptive Technology
© 2003 CEC Services, LLC All rights reserved.

Colin James III, Principal Scientist C: 719.210.9534 / F: 970.593.1350
1613 Morning Dr, Loveland CO 80538-4410 psum@cec-services.com

 Introduction This is about how to build a factory for accounting
arithmetic software. One previous software factory was built outside the
USA about 20 years ago with limited success. A difference between a
hardware and software factory shows the difficulty that plagues software
development: hardware either works or does not work, but software may
sometimes work even though it is broken. The challenge is to make use of
existing products to assemble the software factory and thus avoid the
reinvention of any software. The solution is to rely on proven methods of
development, recent advances in database design as logic table technology
[LTT], and reusable components. The result is a factory that produces
software that is portable, scalable, usable, and maintainable. One benefit
of the effort is reliable statistics that describe the process of development.
The final product executes in real time and faster than other accounting
software. Results are generalized to processing, inventory, and control
and applied further to all types of scheduling and manufacturing.
 Client Information The target client is the Financial Management
Service of the United States Department of Treasury. The project name is
Standard General Ledger [SGL] which is an accounting arithmetic system
based on double-entry book keeping. The Government invented SGL and
requires its use by all Departments. SGL consists of about 150 accounting
transactions and 100 accounts. A typical transaction contains 43 debits and
38 credits. SGL operates on platforms as Windows NT desktop, UNIX
compatible midrange, and IBM compatible mainframe. SGL may reside
within a wrapper for Enterprise Resource Planning [ERP]. SGL is usually
implemented in procedural programming languages as COBOL, C, and in
the non procedural Structured Query Language [SQL] by embedding it.
 Government projects suffer from scope creep, and to that SGL is no
exception. To overcome that condition, the customer was eager to adopt
and use arbitrary software development methodologies. The danger is that
all methods were not invented equally. In practice, this means dynamic
methods where pieces are added, such as the IEEE theoretical standard,
may not be as effective as a comprehensive method that is tailored by the
deletion of pieces, as Mil-STD-498 and its ancestor DoD-STD-2167A/
2168. What follows is that success with a method depends upon how it is
chosen and how it is followed by the leadership of the project.

 Challenge The challenge is building a software factory to make
industrial strength applications that become strategic business assets.
The situation is that no such factory exists as commercial off the shelf
software [COTS]. Benefits sought are software output that is portable,
scalable, useable meaning reliable, and maintainable. The constraint is
developing a mix of tools, methods, and design to meet requirements.
 Strategy 1 builds a software factory from scratch as a prototype
and ostensibly couched in the political title of feasibility study. Current
developmental methods promise to do it, implying instant gratification
in producing something without responsibility for potential side effects
such as those arising from minimal testing. Current developmental tools
offer enticing promises of quick success within the visions of individual
vendors. Some constraints are that: the prototype becomes the delivered
project rather than the throw away code that it really is; and extreme
methods with in the latest tools may not pass the timely measure of best
by test. Benefits are quick delivery of something under the guise of
development and job security by exposure to new tool sets.
 Strategy 2 reuses some generic form of the first known software
factory. In the 1980’s Nippon Telephone and Telegraph [NTT] was the
second largest consumer of Ada compilers, after the US Department of
Defense. Ada is a procedural language portable to many hundreds of
computer platforms. Ada is noted for support of multitasking and reuse
by separate program specification and implementation bodies. NTT set
up a factory to produce portable software components for the telecom
industry. The details of the factory and back end database were kept
secret because at the time NTT deemed the factory to be a significantly
competitive advantage. Some constraints are that: Ada is no longer
taught in schools and not used in new efforts; and the relational database
with source code originally in Ada and the public domain, named
AdaSAGE from the Idaho National Laboratory, is not maintained by
them but elsewhere in non portable Modula 2. Thus, no benefits exist.
 Strategy 3 uses COTS as back end database and front end access.
The database should be relational and SQL compatible to make use of
that standardized commodity. The access tools to the database should be
portable. Constraints are that front end access tools may have limited
portability. For example to use web pages for database access, queries
require embedding SQL in procedural languages which may also vary
widely by vendor fiat. This implies an implementation path which is
inherently not portable or maintainable. Hence benefits are that: a good
database design theoretically avoids procedural processing; non
embedded SQL in the form of static triggers is portable; scalable

relational databases are supported by vendors such as IBM DB2 and
ORACLE; direct database design implies simpler deliverables that are
reliable and usable; and simpler deliverables imply software that is
maintainable with less leadership, staff, and payroll. The problem domain
when fully generalized and abstracted implies the obvious boundaries of
the solution domain. That solution domain also necessarily excludes the
temptation to mix and match combinations of disparate strategies.
 Solution The solution domain is in these sequential phases: COTS
choice; design; and implementation. The COTS platform is to use
relational databases from the major vendors. The design of the database is
based on LTT and its algebra. A logic table contains logic switches which
the SQL engine reads based on input of the users and returns the tasks to
perform. This design coerces non procedural SQL to do procedural
processing. The granular database access code implemented in SQL is not
embedded in procedural languages. To achieve portability the SQL code
is wholly contained within a static trigger of less than 50-lines of code. A
solution for front end access is to adopt the most portable stand alone tool
which is Lotus Approach. This decision avoids endorsement of platform
specific, non portable tools such as ASP, C, C++, C#, Java, and .NET.
 The finished product is named pSUM, pronounced “Sum”, for the
acronym of portable, scalable, useable, and maintainable. pSUM has a
logic table that is fully configurable and programmable by the user. The
logic switches support: double entry book keeping with debits and credits;
triple entry book keeping known as Momentum Accounting with trebits;
and generalized N-entry book keeping. pSUM contains logic switches to:
perform complex scheduling; emit automatic output as input to other logic
tables; allow infinite customization depending upon the initial user input.
The logic table also indexes itself to make it self-modifying in real time
and thus is a self-contained artificial intelligence unit.
 Historically, object oriented (O-O) software renames variables as
objects, declares constraints as assertions, and promises that objects will
follow asserted contracts. O-O software still fails to be portable. Next
comes aspect oriented (A-O) software which promises delivery of
products to capture and mimic precisely the way humans perceive and act.
In manufacturing, attempts at A-O programming are schedule and priority
dispatch applications based on the rules of artificial intelligence. As a
finite automation, A-O software by definition cannot capture the
complexity of the human mind and thus continues to break its promise.
 The logical successor to A-O software is now subject oriented (S-O)
software. pSUM is a S-O software solution by addressing all subjects
associated with requirements by the use of the logic switches of LTT.

