
© Copyright 2000 by Colin James III  
1 of 3 

Real time Performance Arrives: 
Logic Table Technology for DB2 
 
COLIN JAMES III 
 
How logic table technology coerces SQL  
to do procedural processing with real time  
performance for DB2

In 1973 IBM invented Structured Query 
Language (SQL) to access their relational 
database systems which were based on a 
prefect mathematical model.  Some report 
that SQL is now the most common 
computer language in use today, eclipsing 
newer C and older COBOL.  But SQL is 
viewed as a data access language rather 
than a higher order procedural language 
which can loop and branch.  That was the 
case until now.    
      Recently it was discovered how to 
coerce the non procedural SQL to perform 
procedural processing.  The value of this 
innovation is realized in the implications 
which follow such as: perfectly portable 
source code; maintenance of one set of 
source code over diverse platforms; direct 
mapping and simple implementation of 
complex business rules; and real time 
relational database performance. 
 
PROCEDURAL PROCESSING  
WITH SQL 
To automate relational database access, 
the method of choice was to embed ad hoc 
SQL queries within procedural languages.  
Some of these such as Ada, C, COBOL, 
FORTRAN, PL/I, and PL/SQL support 
iteration and decision paths. Using logic 
tables and SQL triggers makes it possible 
to coerce SQL to perform as a high order 
procedural language.  This avoids reliance 
on embedded SQL statements which are 
universally difficult and not portable. 
     Logic table technology (LTT) is made 
up of special purpose relational tables and 

SQL triggers which work together. The 
triggers read the logic table which in turn 
instructs the relational database engine 
what actions to perform next.  How many 
times such an action is performed is 
determined by the trigger's constraints or 
WHERE clauses.   
     The logic table contains two columns.  
One column is for row numbers.  Another 
column is for fixed length strings of 
characters.  Each character acts as a logic 
switch for its positional location within the 
string.  It is from these logic switches that 
LTT derives its name.   
     The SQL triggers sequentially fire to  
read the logic table.  The triggers make use 
of the substring or SUBSTR function in 
SQL to scan  all of the character strings at 
a certain position of interest for the logic 
switch of interest.  The query returns those 
row numbers having the particular logic 
switch of interest at the particular position 
of interest within the strings.  Those row 
numbers then instruct the relational 
database engine how to proceed. 
 
A SAMPLE ACCOUNTING SYSTEM 
The structure and content of LTT is 
illustrated in an accounting system named 
Report Accounts (RA).  The logic table 
contains a column of row numbers 
representing numbered accounts.  The 
logic table also contains a column of fixed 
length character strings or logic switches.  
Each switch represents by its positional 
number the number of a type of accounting 
transaction.  Each switch also represents 



© Copyright 2000 by Colin James III  
2 of 3 

by its character content the particular type 
of accounting action to be taken.  In 
double entry bookkeeping, the types of 
action are credit (Cr), debit (Dr), or none.  
In triple entry bookkeeping, another type 
of action is trebit (Tr). RA supports N-
entry bookkeeping where any number of 
types of actions are available. 
     Here is a sample scenario in six steps 
of how LTT works with accounting 
arithmetic.  See the logic table in Fig. 1.  
The user enters a dollar amount and 
transaction type into a screen input box.  
The SQL triggers then automatically fire 
to do the following.   
  1. The transaction type is looked up for  
its associated transaction type number.   
  2. The logic table string of characters is 
indexed to the position corresponding to 
that transaction type number.   
  3.   The SUBSTR function searches that 
position in all character strings to find any 
logic switches set to not null.   
  4.  The query returns all row numbers 
with that condition.  As each row number 
is returned, the corresponding account 
number is updated with the dollar amount 
by the action specified in the logic switch.  
  5.  A record of the account transaction is 
inserted in a transactions table. 
  6.  The running balance of the account is 
updated in a balance table.  This avoids 
searching the entire transactions table for 
the running balance of an account.  
 
Rows indexed 
as account 
numbers 

Logic as transaction type 
Position      ↓ 
1 2 3 4 5 6 7 8 

100  ←   Cr  Dr  Dr  Cr 

101 Dr  Cr  Dr  Cr   
102  ←   Cr  Dr  Cr  Dr 

 
Transaction type 8 returns the logic to 
credit account 100 and debit account 102. 
 

Fig. 1: Accounting Logic Table 

     For audit tracing, the transactions table 
contains all transactions made and grows 
infinitely.  For corrections, a transaction 
reverses a previous transaction. 
     RA also supports all possible financial 
reporting instruments with the logic table.  
Report contents are specified as print 
fields in the logic switches.   RA is very 
compact and implemented in 10 relational 
tables and 49 lines of SQL code. 
     The content of the logic table is user 
defined.  RA is preloaded with logic for 
the accounting arithmetic of Standard 
General Ledger (SGL).  That is required 
for accounting use by all departments of 
the US Government.  SGL contains a base 
core of 152 complex transactions.  
 
100% PORTABLE CODE 
The SQL code used to access the logic 
table is contained entirely in triggers 
which are perfectly portable between 
relational database vendors.  Moving code 
between vendors takes less than one hour 
due to the vendor specific syntax of the 
one line wrapper code around the triggers.   
     From the RA example, one trigger of 
49 lines of code does all of this as follows: 
INSERT transactions (8 lines); UPDATE   
transactions (4 lines); INSERT   accounts 
(13 lines); UPDATE balances (14 lines); 
and UPDATE  transactions (10 lines). 
     Achieving the goal of 100% portable 
code means that one set of source code is  
maintained across implemented  platforms. 
 
WHERE REAL TIME PERFORMANCE 
ROCKS AND RULES 
Applications implemented using relational 
database technology are traditionally not 
real time performance critical.  Examples 
are accounting and financial systems 
which process outside of business hours, 
much as banks credit deposits made after 3 
PM onto the next business day.  



© Copyright 2000 by Colin James III  
3 of 3 

     However an increased demand for high 
performance is dictated by requirements 
for enormous gluts of incoming data.  
Examples are cellular telephone billing 
systems, subscriber program scheduling 
for High Definition Television (HDTV), 
and shop floor manufacturing where raw 
materials and resources are in contention. 
     To meet the demand for performance, 
LTT delivers real time performance from 
relational database engines.  Performance 
is realized by compact database structure 
and access. The structure is extremely 
simple, such as the 10 tables in RA.  
Logic tables are small enough to be stored 
in the main computer memory at all times, 
thus speeding read response time.  The 
access is very fast with small SQL 
triggers, such as the 49 lines of code in 
RA.  Such native triggers also avoid 
pitfalls of SQL code embedded in high 
order languages. 
 
DB2 OUTPERFORMS THE FIELD 
LTT was stress tested for performance on 
multiple relational database engines.  The 
vendor products were DB2 UDB 5.2, 
ORACLE 7.2, and SQLServer 7.0.  Each 
computer platform contained the identical 
NT operating system, processor speed, 
and memory capacity.  
     The sample accounting system above 
was used without reporting capability and 
thus with eight tables and seven triggers 
totaling 49 lines of SQL code. All tables 
were minimally populated with data and 
hence contained in the computer memory.  
The stress load was an average SGL 
transaction of 25 debits and six credits. 
     The results were astonishing.  DB2 ran 
six times faster than ORACLE and 12 
times faster than SQLServer. 
 
RECENT ADVANCES IN LTT 
Structure of the logic table is critical to 
overall performance.  Size and complexity 

of the logic table is of interest because a 
densely populated logic table occupies as 
much space as one sparsely filled. 
      The reader by now has inferred that 
complex business rules may be captured in 
multiple chained or connected logic tables.  
These logic tables may in turn index each 
other or themselves so as to self-modify.  
Multiple logic tables may be stacked then 
folded into each other to save space. To 
measure the complexity of chained logic 
tables formulas are developed to determine 
the total number and type of all possible 
query combinations. 
      The code structure of the SQL queries 
to access logic tables was implemented 
and generalized into Petri Nets (PN).  It 
was discovered that the logic table queries 
match the common PN framework known 
as Kanban cells in flexible manufacturing 
systems (FMS).  Therefore   LTT is ideally 
suited as a basis for intelligent, automated 
software factories to supplant and replace 
the diverse yet flexible software functions 
for the various definitions of middleware. 
 
ACKNOWLEDGMENTS 
Thanks are due for helpful discussions to 
Larry Cagg of Cagg Enterprises.● 
 
Colin James III is principal scientist at 
CEC Services, LLC.  This article is based in 
part on his published conference papers 
and recent doctoral dissertation.  His email 
address is cj3@cec-services.com. 


