
© Copyright 2003 by CEC Services, LLC All Rights Reserved 2/19/2004 1 of 8

Layered Logic Tables (LLT)

Colin James III, Principal Scientist, CEC Services, LLC, 1613 Morning Dr, Loveland CO
80538-4410, ltt@cec-services.com, C: 719.210.9534 , F: 970.593.1350

Keywords

automatic programming, correlated sub query, dispatching, Layered Logic Tables, loom,
LTT, manufacturing, scheduling, software factory automation, SQL, thread, weaving

Abstract

In the textile industry, the rules of dispatching thread for vertical and horizontal positions
are mapped directly into rows and columns of a logic table in relational database. Layers
of logic tables apply to loom instructions for weaving. In the software development
industry, a software factory is built using the same principles and at the complexity of
five levels. When abstracted, the generic form of layered logic tables in structured query
language (SQL) is the code segment format of:

IN (SELECT … FROM … WHERE SUBSTR … = [valid switch]).

Introduction

In 1834 Charles Babbage attempted to program looms by his Analytical Engine. One of
his students was Lady Ada Byron Lovelace, also known as the first female programmer.
In her honor, the US Department of Defense named their programming language as Ada.
Two hundred years later, the textile industry and the manufacturing sector continue as
candidates for programming automation.

© Copyright 2003 by CEC Services, LLC All Rights Reserved 2/19/2004 2 of 8

Layers of Logic Tables

A logic table contains switches to instruct a loom as to which horizontal color per vertical
row to use per horizontal position, as in Table A below.

 Logic Table A for Weaving:
 Row Column Position Number

Number VThread 1 VThread 2

HThread 1 HColor 9 --
HThread 2 -- --
HThread 3 -- --
HThread 4 HColor 1 HColor 6

Logic Table A outputs in horizontal thread rows the respective horizontal thread color by
vertical position. The input is vertical thread position and vertical thread color per task
from Logic Table B below.

 Logic Table B for Tasks of Weaving:
 Row Column Position Number

Number Task 1 Task 2

VThread 1 VColor 3 --
VThread 2 VColor 4 --
VThread 3 -- VColor 2

From Table B, Task 1 designates the background vertical color 3 for vertical thread 1.
From Table A: horizontal thread color 9 is for row 1; horizontal thread color 3 is for rows
2 through 3; and horizontal thread color 1 is for row 4. Task 1 also designates the
background vertical color 4 for vertical thread 2. From Table A: horizontal thread color 4
is for rows 1 through 4; and horizontal thread color 6 is for row 4. Table B effectively
serves as an index of layers of Table A.

A third Table C for requirements may be added for units of software requirements
containing a series of tasks,

 Logic Table C for Units of Tasks:
 Row Column Position Number

Number Unit 1 Unit 2

Task 1 USwitch 2 --
Task 2 -- Uswitch 3

From Table C: Unit 1 designates software unit switch USwitch 2 for Task 1; and Unit 2
designates USwitch 3 for Task 3.

© Copyright 2003 by CEC Services, LLC All Rights Reserved 2/19/2004 3 of 8

A Hierarchy of Layered Tables

The hierarchy of layered logic tables below follows the order of eight subsets derived
from requirements in the order of most specific to most abstract: 1. Item; 2. Step; 3.
Procedure; 4. Process; 5. Task; 6. Unit; 7. Component; and 8. Requirement. This
hierarchy is compatible with the Software Development Methodology (SDM) [James
2002.5].

 Logic Table 7 for Step:
 Row Column Position Number

Number Step1 Step 2 Step M
Step Item N Step Switches

 Logic Table 6 for Procedure:
 Row Column Position Number

Number Procedure 1 Procedure 2 Procedure M
Procedure Step N Procedure Switches

 Logic Table 5 for Process:
 Row Column Position Number

Number Process 1 Process 2 Process M
Process Procedure N Process Switches

 Logic Table 4 for Task:
 Row Column Position Number

Number Task 1 Task 2 Task M
Task Process N Task Switches

 Logic Table 3 for Unit:
 Row Column Position Number

Number Unit 1 Unit 2 Unit M
Unit Task N Unit Switches

 Logic Table 2 for Component:
 Row Column Position Number

Number Component 1 Component 2 Component M
Component Unit N Component Switches

 Logic Table 1 for Requirement:
 Row Column Position Number

Number Requirement 1 Requirement 2 Requirement M
Requirement Component N Requirement Switches

© Copyright 2003 by CEC Services, LLC All Rights Reserved 2/19/2004 4 of 8

Table design considerations

There are four basic designs to implement the logic tables above.

1. Each table contains two columns for row number and switches.

2. The tables are combined into one table where:

2.1. One column is for row numbers, and one column of switches is for all logic

tables concatenated together in one string.

2.2. One column is for row numbers, and multiple columns of switches are for

the respective logic tables.

2.3. Multiple columns are for row numbers, and multiple columns of switches
are for the respective logic tables.

For design 1, the positive feature is clarity of design with one logic table per level. The
negative feature is using more logic tables because databases with more tables usually
perform slower.

For design 2.1, the positive feature is using fewer logic tables. The negative feature is
loss of clarity of design because the single string of logic switches are indexed using
arbitrary constants unique to the string length of the run of each respective logic block.

For design 2.2, the positive features are direct indexing of any logic block as a column
and the potential for the length or complexity of any logic block as a column to grow
dynamically if the data type is a variable character VARCHAR(nnn). The negative
feature is that in order for the column for row numbers to be reused many times for each
set of switches, the column must be renamed for sub queries where the aliases are by
table rather than by meaningful column names helpful for code maintenance.

For design 2.3, the positive feature is for columns for row numbers to be directly named
for clarity without resorting to confusing aliases. The negative feature is more than one
column for row numbers for each respective column of logic switches.

For clarity of implementation and subsequent code maintenance, design 2.3 was chosen.

© Copyright 2003 by CEC Services, LLC All Rights Reserved 2/19/2004 5 of 8

Code implementation in DB2

For design 2.3, the implementation code below in SQL is specific to IBM DB2. The first
section of code sets up the database.

DISCONNECT all @
!! In case the database already exists: DROP DATABASE LLT @
CREATE DATABASE LLT @
CONNECT TO LLT @
UPDATE DATABASE CONFIG FOR LLT USING stmtheap 32768 @
!! Note: the statement heap must be significantly more than the default 4096 @
SET CURRENT QUERY OPTIMIZATION 0 @
!! Note: the minimum optimization avoids elaborate access plans @

CREATE TABLE logic (

reqt_comp INTEGER NOT NULL, reqt_switch VARCHAR(254),
comp_unit INTEGER NOT NULL, comp_switch VARCHAR(254),
unit_task INTEGER NOT NULL, unit_switch VARCHAR(254),
task_process INTEGER NOT NULL, task_switch VARCHAR(254),
process_procedure INTEGER NOT NULL, process_switch VARCHAR(254),
procedure_step INTEGER NOT NULL, procedure_switch VARCHAR(254),
step_item INTEGER NOT NULL, step_switch VARCHAR(254))
@

ALTER TABLE logic ADD PRIMARY KEY (reqt_comp) @

CREATE TABLE switch (switch_id CHAR(1) NOT NULL) @
ALTER TABLE switch ADD PRIMARY KEY (switch_id) @

INSERT INTO logic (reqt_comp, reqt_switch, comp_unit, comp_switch, unit_task,

unit_switch, task_process, task_switch, process_procedure, process_switch,
procedure_step, procedure_switch, step_item, step_switch)

VALUES (1, '11x', 1, 'xx1', 1, '1xx', 1, 'xxx', 1, '1x1', 1, '1x1', 1, '1x1') @

INSERT INTO logic (reqt_comp, reqt_switch, comp_unit, comp_switch, unit_task,

unit_switch, task_process, task_switch, process_procedure, process_switch,
procedure_step, procedure_switch, step_item, step_switch)

VALUES (2, 'xxx', 2, 'xxx', 2, 'xxx', 2, '2x2', 2, 'x2x', 2, 'x2x', 2, 'x2x') @

INSERT INTO logic (reqt_comp, reqt_switch, comp_unit, comp_switch, unit_task,

unit_switch, task_process, task_switch, process_procedure, process_switch,
procedure_step, procedure_switch, step_item, step_switch)

VALUES (3, '3x3', 3, '3xx', 3, 'xx3', 3, '3xx', 3, 'xx3', 3, 'xx3', 3, 'xx3') @

INSERT INTO switch (switch_id) VALUES ('1') @
INSERT INTO switch (switch_id) VALUES ('2') @
INSERT INTO switch (switch_id) VALUES ('3') @

© Copyright 2003 by CEC Services, LLC All Rights Reserved 2/19/2004 6 of 8

The second section of code specifies the main SELECT statement for the trigger to read
the database. Some aliasing cannot be avoided, although it is still clear.

SELECT L13.step_item
FROM logic AS L13, logic AS L12, switch
WHERE SUBSTR(L13.step_switch, L12.task_process, 1) = switch_id
AND L12.task_process IN

(SELECT L11.procedure_step
FROM logic AS L11, logic AS L10, switch
WHERE SUBSTR(L11.procedure_switch, L10.process_procedure, 1) =

switch_id
AND L10.task_process IN

(SELECT L9.process_procedure
FROM logic AS L9, logic AS L8, switch
WHERE SUBSTR(L9.process_switch, L8.task_process, 1) =

switch_id
AND L8.task_process IN

(SELECT L7.task_process
FROM logic AS L7, logic AS L6, switch

 WHERE SUBSTR (L7.task_switch, L6.unit_task, 1) = switch_id
AND L6.unit_task IN

(SELECT L5.unit_task
 FROM logic AS L5, logic AS L4, switch
 WHERE SUBSTR (L5.unit_switch, L4.comp_unit, 1) =

switch_id
 AND L4.comp_unit IN
 (SELECT L3.comp_unit
 FROM logic AS L3, logic AS L2, switch
 WHERE SUBSTR(L3.comp_switch, L2.reqt_comp, 1) =

switch_id
 AND L2.reqt_comp IN
 (SELECT L1.reqt_comp
 FROM logic AS L1, switch
 WHERE SUBSTR(L1.reqt_switch, 1, 1) =

switch_id)))))) @

The "1" in the line above supplied by the user out of the other values of "2" or "3". The
output tests correctly as:

step_item
- - - - - - -
 2
 1
 1
 3

© Copyright 2003 by CEC Services, LLC All Rights Reserved 2/19/2004 7 of 8

Generic SQL Code for Layered Logic Tables

The generic SQL code for layered logic tables 1-8 is below. The sequence of these
correlated queries returns the procedures and respective procedure switches for updating.

SELECT …
FROM …
WHERE SUBSTR(switch, index_value, 1) = [valid_switch]
AND index_value IN

(SELECT index_value_passed
FROM …
WHERE SUBSTR(alias switch, user_input_index, 1) = [valid_switch])

Conclusion

LLT is ideally suited for programming looms in the weaving industry and by extension
for implementing software factories, manufacturing, dispatch scheduling, and networks.
The generalized implementation is:

IN (SELECT … FROM … WHERE SUBSTR … = [valid_switch])

Acknowledgements

Thanks are due for helpful discussions to LR Cagg, MD Mousa, and DL Vulis.

References

James, C. 2003.2, "Software Factory", unpublished brochure, CEC Services, LLC,
Loveland CO.

James, C. 2003.1, "Software Factory", unpublished poster, CEC Services, LLC, Loveland
CO.

James, C. 2002.5, "The Software Development Methodology [SDM]", unpublished, CEC
Services, LLC, Loveland CO.

James, C. 2002.4, "Reentrant Logic Table Technology", unpublished, CEC Services,
LLC, Loveland CO.

James, C. 2002.3, "Static and Dynamic Driver Triggers", unpublished, CEC Services,
LLC, Loveland CO.

© Copyright 2003 by CEC Services, LLC All Rights Reserved 2/19/2004 8 of 8

James, C. 2002.2, "Additional Information", unpublished, CEC Services, LLC, Loveland
CO.

James, C. 2002.1, “Implementation Details for Multiple Billing”, CEC Services, LLC,
Loveland CO.

James, C. 2001.2, "Report Accounts [RA] v 1.2 Inventory / Point of Sale", unpublished,
CEC Services, LLC, Loveland CO.

James, C., 2001.1, "Report Accounts [RA] v 1.2", unpublished, CEC Services, LLC,
Loveland CO.

James, C. 1999.1, “Recent Advances in Logic Tables for Reusable Database
Engines”, Proceedings of the American Society of Mechanical Engineers International,
Petroleum Division, 75th Anniversary Conference, Energy Sources Technology
Conference & Exhibition, Houston, Texas.

James, C., 1998.5, "Multiple and Self-Modifying Logic Tables with Queries",
unpublished, CEC Services, LLC, Loveland CO.

James, C. 1998.4, “A Reusable Database Engine for Accounting Arithmetic”,
Proceedings of The Third Biennial World Conference on Integrated Design & Process
Technology, Vol. 2, pp. 25-30, Berlin, Germany.

James, C., 1998.3, "Competency test for CEC Services, LLC", unpublished, CEC
Services, LLC, Loveland CO.

James, C. 1998.2, “Theory and Application of Logic Tables in Relational Database
Engines”, Doctoral Dissertation, Pacific Western University, Los Angeles.

James, C., 1998.1, "Ticket Reservations [TR] ver 1.1", unpublished, CEC Services, LLC,
Loveland CO.

James, C., 1997.2, "User Documentation", unpublished, CEC Services, LLC, Loveland
CO.

James, C., 1997.1, "Logic Table Design for Reports in RA", unpublished, CEC Services,
LLC, Loveland CO.

	Layered Logic Tables (LLT)
	Keywords
	Abstract
	Introduction

	UPDATE DATABASE CONFIG FOR LLT USING stmtheap 32768 @

