IDPT-Vol. 2, 1998

ISSUES AND APPLICATIONS OF
DATABASE TECHNOLOGY

Presanted at

THE THIRD BIENNIAL WORLD CONFERENCE
ON INTEGRATED DESIGN AND

PROCESS TECHNOLODGY
BERLIN, GERMANY
JULY 5-8, 1998
Sponsored by
Society for Design and Process Science
Co-Sponsored by
RGK Foundation

Innovation Creativity and Capital (1C?) Institute
Institute for Design and Advanced Technology (IDEATE), Texas Tech University
International Institute for Systems Integration

The American Society of Mechanical Engineers:
Petroleum Division
Design Engineering Division
Computers in Engineering Division
Advanced Energy Systems Division
Chinese Mechanical Engineering Society, China
Le Centre National de la Recherche Scientifique
The Japan Society of Mechanical Engineers, Design & Systems Division
Conseil National des Ingénieurs et des Scientifiques de France
Groupe de Concertation de la Mécanique
Associazone Termotecnica ltaliana Sezione Toscana
Chamber of Mechanical Engineers, Turkey
Lufthansa German Airlines

EDITED BY

Tamer Ozsu

University of Alberta, Canada

Asuman Dogag

Middle East Technical University, Tlrkiye

Ozgiir Ulusoy
Bilkent University, Tlrkiye

SOCIETY FOR DESIGN AND PROCESS SCIENCE
1301 West 25th Street ¢ Suite 300 ¢ Austin ¢ TX 78705-4236

Integrated Design and Process Technology, IDPT-Vol. 2
Printed in the United States of America, July, 1998

A REUSABLE DATABASE ENGINE FOR
ACCOUNTING ARITHMETIC

C. James
CEC Servicas
Loveland, CO

ABSTRACT

Report Accounts [RA] is a reusable, core, database
engine for accounting arithmetic.

Recent advances in business information systems are:

|. How to map the auributes, objects, and classes of
accounting arithmetic directly into relational
columns, rows, and tables.

2. How 1o encode user-defined transaction logic into
a single table; and

3. How to coerce nonprocedural SQL to perform the
procedural processes of accounting arithmetic.

INTRODUCTION

This paper is divided into six parts: |. Requirsments; 2,
Analysis; 3. Design; 4. Implementation; 5. Testing; and
6. Maintenance.

I. REQUIREMENTS

Requirements must be present in the problem domain
in order for it to be decomposed effectively. Problem
domain requirements include completeness, reliability,
scalability, performance, and methodology.

1.1 COMPLETENESS

The requirement of completeness means that the
problem domain must contain complete information for
the assessment of the expert field, which here is
accounting arithmetic,

Traditional accounting uses double-entry bookkeeping
with the atomic parts of debits [dr] and credits [er].
Momentum accounting (ljiri, 1989) uses triple-entry

© 1998 Sociery for Design and Process Science

bookkeeping with the additional atomic part of trebits [tr].
This allows for time-rate of change measurements that
produce momenta (dr), impulse (cr), wealth (dr), income
{cr), action {(tr), and a three-dimensional structure of
accounting. Derivatives of these measurements produce
aggregation matrix reports that benefit management. The
business value of momentum accounting is that while
raditional accounting reports would show a business to be
solvent, momentum accounting reports could show the
business to be insolvent, and exactly where the business is
insolvent. (The author's company obtained permission to
implement momentum accounting (Polhemus, 1995).)

According to generally accepted accounting principles
[GAAP] (AICPA, 1994), a valid accounting system must
also not modify any prior transaction and must afford a
complete audit trail for accountability.

1.2, RELIABILITY

The requirement of reliability means that the problem
domain must include enough information to assess
security and stability.

Security includes the encryption of data records and the
integrity of data records obtained from across a multi-user,
networked environment. Data encryption is addressed by
a non-invertive random number generator (James, 1993).
Data integrity is addressed by checksums such as CRC-
CCITT and transaction commit heuristics of an industrial
strength, backend database platform.

1.3. SCALABILITY

The requirement of scalability means that the problem
domain must contain information that is capable of
describing the largest size of such a core accounting
system as RA.

For example, consider accounting for High Definition
Television [HDTV] as a potential subset of the problem
domain. The maximum number of potential users in a
perfect world would be the population of about 4.3 billion
subjects. Given a set-top box for each such subject and
with 256 separately addressable central processing units
[CPUs] per box, RA would have to accommodate a fine
enough time slice for record commits to differentiate
between all CPUs committing at about the same instant in
time. Furthermore, the core database for accounting
arithmetic would have to accommodate an arbitrarily large
enough number of separate accounts such as 16,384,
Given such scalability, it is estimated that the accounting
database needs for IBM Corporation could be processed
and addressed from a single such set-top box.

1.4, PERFORMANCE

The requirement of performance means that the
problem domain must provide information as to the
acceptable speed and throughput to be deemed useful and
of strategic business value.

A standard real-time benchmark in the business
community is that more than three-seconds for a complete
computer transaction to commit is not acceptable. That
less complex systems usually perform faster implies that
RA necessarily should be kept less complex for the best
possible performance. Another way to ensure high
performance in database throughput is to make use of
recent advances in sorting and indexing (James, 1995).

I.5. METHODOLOGY

The requirement of methodology means that the
problem domain must contain enough information to be
assessed in an abstract and logical notation capable of
describing the entire life cycle of the development effort.

Of the 100 methodelogies in use today, the only one
based on third-order predicate logic is Business Object
Motation [BON] {Walden and Nerson, 1995).

2. ANALYSIS

For the accounts, logic, and transactions subsystem of
RA, the analysis in BON diagrams appears in Fig. 1.
Attributes of objects have indented labels in italic font
Objects have outdented labels in normal font. Classes of
objects are ellipses with centered labels in bold font
Arrows show inheritance and point from the child class o
the parent class. Constraints or business rules are not
listed, but apply to single or multiple objects at the same
level as do arttributes.

3. DESIGN

The design of RA was undertaken using relational
database tables, resulting in eight tables and 26 columns.

A recent advance in business information systems was
the mapping of BON diagrams directly into relational
database tables on a one-to-one basis. The classes for
transactions, logic, and accounts in Fig. 1 map to and
match the same respective tables in Fig. 2.

4. IMPLEMENTATION

Other recent advances in business information systems
were discovered during the development of RA. They are
table-loaded logic and using SQL92 as a procedural
language.

Certain security factors were discussed above in
section 1.2. Reliability. In the initial design, the
assumption was that the level of security, including data
encryption and data integrity across a nerwork, was to be
handled externally by the database and its environment.
However, those factors are easily implemented for tertiary
security levels by including these respective columns in
each table: commit switch; type of encryption; and
checksum value,

4.1. TABLE-LOADED LOGIC

The logic for the accounting arithmetic is stored in the
logic table in Fig. 2. There are arbitrarily 16,384-
transaction types and 16,3B4-account types. A given
transaction type operates on from 2- to 34-accounts, as
specified by accounts in the U.5. Government Standard
General Ledger [SGL] (SGL, 1996). Exactly which
accounts are updated for a piven transaction is also
contained there; for example, see Fig. 3.

The SGL specifies accounts (and transactions) in the
range of 1000 to 9999. RA arbitrarily has designated
transactions in the same ranges. RA also designates
transactions in the range of | to 99 for internal use and
maintenance of tables such as updating and deleting logic,
type of transaction, type of account, and the respectively
affected balances. RA designates reports in the
transaction range of 100 through 999, that is 900
transactions for reporting use.

The process flow of RA is as follows, The user inputs
a type of transaction, monetary amount, and post / reverse
switch to the transaction table of Fig. 2. RA looks up the
transaction type in the logic table to determine which
accounts are to be updated and by which process of cr, dr,
or tr. Those respective account numbers are: looked up in
the balances table for the current balance; inserted into the
accounts table with the updated, new current balance; and
updated in the balances table with the new running
balance. Upon completion of the respective account
number transactions; the time stamp on the original

transaction is updated and set as a commit switch.
Another purpose of the balances table is for fast reporting
because it is easier to look up an indexed, unique account
number for the current running balance than to search the
accounts table for the most recent entry.

For intenal RA transactions such as updating
descriptions of the accounts in the type of account table
and updating descriptions of the transactions in the type of
transaction table the same process flow above is used
except that the balance accessed always renders a zero
balance. Similarly, for external RA reporting transactions
the same process flow is used.

Complete audibility, accountability, and rollback is
also available due to the design and implementation of the
accounting system of RA.

4.2. SQL92 AS A PROCEDURAL LANGUAGE

To effect the table-loaded logic above, what was
originally implemented was a look up table of T-
transaction rows, each row containing switches for A-
account columns, i.e., a T-by-A table.

The practical problem was the sheer number of A-
account columns needed, totaling 16,384, Most vendors
of relational databases do not support that many columns,
The A-columns could be collapsed into one column of bit-
switches, internally grouped by 2-bits per switch for the 4-
states of interest of cr, dr, tr, and none. Such a column
would become a string of 32,768-bits extending over
4,096-bytes, the length of which most vendors would
allow. But testing the respective bit groups had the
additional problem of doing bit manipulation by
progressing through the bits which is computationally
more intensive than searching for switches as bytes. In
other words, while the Oracle SUBSTR command works
on a single query basis, SUBSTR is not practical in a
series of 16,384 single SELECT statements.

The problem was submitted to the generalization mode
of thinking leamed from using BON for object-oriented
analysis. The resulting abstract solution was to swap the
row and column designation of the T-by-A table into an
A-by-T table of A-account rows and T-transaction
columns. Thus the SUBSTR command could be used on a
string of T-transactions to retrieve only those A-account
rows having the switch states of interest,

This solution made use of the obvious fact that the
querying power of SQL92 is in returning rows and not
columns which is sometimes contrary to the way one
would ordinarily view matrices or tables. Hence the A-
by-T table has only one column which is constrained in
such a way as to produce quickly a number of rows, rather
than the unwieldy T-by-A table which would have
effectively required the A-columns to be queried
sequentially by many separate queries. The logic table of
RA thus effectively coerces non-procedural SQL92 1o
perform procedural tasks and thereby avoids embedding
SQL in procedural languages.

27

RA uses three sets of compact SQL code for updating
accounts, balances, and transactions. The SQL code totals

less than 50-lines. (A line of SQL code is defined as
beginning with a SQL keyword such as AND, AS, and
IM.)

5. TESTING

Because RA contains less than 50 lines of SQL code,
test suites were relatively simple with a total of 28 tests as
follows. The code set for updating accounts code had nine
input boundary tests and 15 intermediate and final query
tests. The code set for updating balances had two tests.
The code set for updating transactions had two tests.
Because the test suite was modest, it was not automated,
and regression testing was performed by hand.

6. MAINTENANCE

Due to SQL92, RA code is portable and extensible to
more platforms than other accounting database engines.

Due 1o the logic table design, it is easy to modify RA
for accounting transactions and reporting functions. It is
also easy to adapt RA for other business purposes such as
inventory where the inventory data is contained in
multiple accounts.

CONCLUSION

This paper shows the nearly automatic process of
exactly: how an object-oriented methodology BON was
used to analyze the problem domain and how the resulting
object-oriented design was mapped directly on a one-to-
one basis into relational database tables,

Recent advances in automated software engineering
are: how to load accounting transaction logic directly into
a relational database table; and how to access and process
that logic in an automatic and sequential manner from
within the non procedural language of SQL92 and without
embedding it in a procedural language.

Lessons learned were: how important automatic
documentation is for the development environment and
the end user production environment; and how necessary
some integrated reporting tool is to business rules
automation and the business rules repository.

More research and practical experience needs to be
concentrated on the significant process of automating
object-oriented analysis with relational database table
design and business rules implementation. It is through
such study that the once disparate fields of object-oriented
analysis and business rules automation can be reconciled
and unified into a generic process and useful engineering
tools which are seamless and reversible,

ACKNOWLEDGEMENTS

This acknowledges with gratitude helpful comments of
and discussions with: Brian Campbell, CPA, Campbell,
Irvine and Rosenbaum; and Yuji Ijiri, Robert M
Trueblood University Professor of Accounting and
Economics, Camegie Mellon University.

REFERENCES

AICPA [American Institute of Certified Public
Accountants, Inc.], 1994, Improving Business Reporting -
A Customer Focus: Comprehensive Report of the Special
Committee on Financial Reporting.

ljiri, ¥., 1989, "Momentum Accounting and Triple-
Entry Bookkeeping: Exploring the Dynamic Structure of
Accounting Measurements", Studies in Accounting
Research #31, American Accounting Association.

James, C., 1993, "Two Phase Random WNumber
Generator”, United States Patent Number 5, 251,165,
issued October 5, 1993,

James, C., 1995, "Binary Sort Access Method [BSAM]
and Apparatus”, United States Patent Pending, December
11, 1997 (Continuation in Part from July 27, 1995),

Polhemus, C. E., 1995, Correspondence from the
Executive Director, American Accounting Association,
December 6, 1995,

SGL, 1996, Department of the Treasury, Financial
Management Service [FMS], U.5. Government Standard
General Ledger, 6/01/89; Anachment |, 5/3/94, and
Section [1l. Accounting Transactions, 7/21/86.

Walden, K., and Merson, J., 1995, "Seamless Object-
Oriented Software Architecture: Analysis and Design of
Reliable Systems”, Prentice Hall UK.

FIGURES

ID
numeric_id

unique, fype,currency

alpha_id
postireverse, credit/debit/trebit

SGL

accounts
transactions

comments
description

name
memo

transactions
trans_id
trans_type_trans_sgl_id

accounts
acct_type_acct_id

acct_trans_id

e trans_post_reverse
acct_bal_amount S e
acct_entry_type - = P

trans_amount

acct_post_reverse
—Post_ trans_comment

logic
logic_type_acct_id
logic_trans

Fig.1 BON diagrams for RA

29

transactions

TRANS_ID LONGINT AUTONUM
TRANS_TYPE_TRANS_SGL_ID(0..9999 trans) INT

TRANS POST_REVERSE (Post/Reverse) TEXT(1)
TRANS_TIME_STAMP DATE
TRANS_AMOUNT CURRENCY
TRANS_COMMENT TEXT(255)
logic

LOGIC_TYPE_ACCT_ID {0..9999 accounts) INT
LOGIC_TRANS MEMO(9999)
accounts

ACCT_TYPE_ACCT_ID (0..9999 accounts) INT
ACCT_TRANS_ID LONGINT
ACCT BAL_AMOUNT CURRENCY
ACCT_ENTRY_TYPE (Cr/DrfTr) TEXT(1}
ACCT_POST_REVERSE (Post/Reverse) TEXT(1}

Fig. 2 RA relational table subsystem

4135. Receipt of other cash. [transaction 4115)

Proprietary Accounts
Dr. 1190 Other cash |debir account 1190)
Cr. 2990 Other Liabilities [credit account 2990]

Fig. 3 Example from SGL

