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ABSTRACT 
      Report Accounts [RA] is a very fast reusable database engine for 
accounting arithmetic implemented in 10-tables and less than 25-lines 
of ANSI SQL code.  RA has been generalized into abstract engines for 
process engineering and flexible manufacturing systems [FMS]. 
      Recent advances are: 
      1. How to chain logic tables for multi-level design of complex 
systems. 
      2. How to map a database engine with multi-level logic tables into 
a Petri Net [PN]. 
      3. How to recognize patterns in such PNs for reuse as frameworks 
in other systems. 
      4. How to recognize frameworks in Kanban, FMS, and product-
form queueing networks [PFQN]. 
   
 
INTRODUCTION 
      This paper is divided into six parts: 1. Summary of previous work; 
2. Analysis; 3. Design; and 4.  Implementation. 
   
 
1. SUMMARY OF PREVIOUS WORK 
      The previous work below is summarized from James (1998) and 
from recent results. 
      For Report Accounts [RA], the problem domain was determined 
through analysis from the requirements from which the design of the 
solution domain became obvious for implementation.  Business 
Object Notation [BON] was used for analysis and design, and 
relational database management systems [RDBMS] technology was 
used for implementation.  BON determined and isolated the 
components of attributes, objects, and classes.  These in turn were 
mapped on a one to one basis directly into the respective columns, 
rows, and tables of RDBMS technology.  The mapping process was 
intuitive, seamless, and reversible and quite unlike the current 
methodological tools for computer aided software engineering 
[CASE] which promised but could not deliver the same. 

      The specific requirements for RA were a database engine for 
accounting arithmetic to support: 
1.1.1. Bookkeeping with user specified logic such as double- and 

triple-entry bookkeeping using credits [cr], debits [dr], and 
trebits [tr] 

1.1.2. Reporting of all financial instruments 
1.1.3. Accountability to trace back all transactions, also known as 

generally accepted accounting principles [GAP] 
1.1.4. Portability to any major hardware / RDBMS platform 
1.1.5. Maintainability in a ubiquitous ANSI computer language 
1.1.6. Scalability of four billion potential concurrent users 
1.1.7. Performance of not less than three seconds for the real time 

commit of a complete accounting transaction 
      The requirements were met or exceeded in these respective 
implementations of RDBMS technology: 
1.2.1. N-entry bookkeeping is achieved through a logic table 

specified by the user where columns are transaction type 
numbers and rows are the account numbers on which 
respective switches are encoded with the type of arithmetic 
operation. 

1.2.2. Reporting is achieved with the same logic table but with 
columns viewed in a separate numeric range as report type 
numbers, rows as account numbers, and switches encoded 
for the tab and row positions within a page and the type of 
reporting arithmetic. 

1.2.3. Accountability is achieved in table design.  The transaction 
table grows infinitely where truncations can not be altered 
per se but may be reversed through another transaction, all 
indexed to and from the accounts table.   

1.2.4. Portability is achieved through RDBMS using ANSI 
Structured Query Language [SQL] which is a database 
access language as opposed to a procedural language. The 
SQL code to access the logic table uses the SUBSTR 
substring function which returns all row numbers specified 
by switches present in the column number of interest.  This 
avoids reading each row in its entirety with the INSTR 
instring function.  The logic table design and SUBSTR 
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function implementation effectively coerce SQL to perform 
the procedural processing inherent to accounting arithmetic.  
Hence non-procedural SQL achieves the portability not 
realized by procedural computer languages.   

1.2.5. Maintainability is achieved with the design of only ten 
tables and implemented in less than 25-lines of ANSI SQL 
code.  

1.2.6. Scalability is achieved by the choice of the RDBMS 
vendor.  Currently IBM DB2 supports the maximum 
number of concurrent users. 

1.2.7. Performance is achieved by table design and by the choice 
of the RDBMS vendor. RA is implemented in a minimum 
number of ten tables.  The accounts table contains all 
account entries.  A separate table for account balances 
contains one row respectively for the current running 
balance of each account number to ensure fast lookup.  The 
relative performance of RA by vendor is currently as 
follows:  IBM DB2 is 24-times faster than ORACLE;  and 
CA OpenIngres is 6-times faster than ORACLE.  Sybase 
and Informix were not tested due to extreme difficulties in 
obtaining those products with or without support. 

 
 

2. ANALYSIS 
      This section describes how to stack or chain logic tables to 
perform multiple processes or operations on different levels. 
      2.1. RA uses a logic table of columns as transaction type numbers, 
of rows as account numbers, and of switches as the desired arithmetic 
operation of cr, dr, tr, or blank for none.  The user specifies a 
transaction type number to access the logic table.  That transaction 
type number is associated with a column, either directly by columnar 
position or indirectly by an index.  That column is searched for any 
switches not set to blank.  Those switches found then designate the 
particular rows and associated account numbers to which the 
transaction amount is applied as either cr, dr, or tr.  Thus a single 
transaction selects multiple accounts. 
      2.2. We index the logic table in 2.1 above with a logic table for 
tasks where columns are task type numbers, rows are transaction type 
numbers, and switches are Boolean flags.  Thus a single task selects 
multiple transactions which in turn select multiple accounts. 
      2.3. We also index the logic table in 2.2 above with a logic table of 
times where columns are time types, rows are task type numbers, and 
switches are Boolean flags.  Thus a single time selects multiple tasks 
which in turn select multiple transactions and accounts. 
      2.4. We generalize the indexing of the logic tables in 2.1-2.3 
above into abstract logic tables of level N.  Thus a single operation at 
level N selects multiple operations at level N-1 which in turn select 
multiple operations at level N-2, at level N-3, …,  and at Level N-(N-
1) or Level 1. 
            The processes designated as columnar major in the respective 
logic tables above are times, tasks,  and transactions.  Other processes 
and operations may also be designated depending on the area of 
interest.  For example in manufacturing, the columns in ascending 
order of level may be parts, inventories, assembly lines, shifts, work 
days, deadlines, projects, and systems.  To abstract further, for 
example in computer science, the columns in ascending order of level 
may be neural networks, fuzzy logics, artificial intelligences, genetic 
algorithms, self-teaching systems, and self-replicating universes.     
 
 

3. DESIGN 
      What follows from the analysis above is the necessity to capture 
the levels of chained logic tables into a graphical network hierarchy 
for discussion, manipulation, and simulation.  To that end the Petri 
Net [PN] is an available tool.  
      The PN for RA and the logic table of 2.1 above is in Fig. 1.   
 
 
      K 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

p50 Transaction type (and amount)

p52 Transaction type column number

p54 Account numbers and switches

p58 Arithmetic on account balance

p60 Arithmetic on running balance

p62 Time stamp

p56 Inhibit any more queries

T50:  SQL insert transaction

T52: SQL query of transaction logic

T54.2: SQL query of balance

T58: SQL insert on account

T60:  SQL update on balance

T62:  SQL update transaction

T56.2: Return  to user input

T54.4:  No accounts

 
Fig 1.  PN engine for one logic table 

 
 
      The mathematical definition of the PN in Fig. 1 is after Marsan 
(1995) below:  
 
Definition.   A PN model is an 8-tuple 

 
      М = {P, T, I, O, H, PAR, PRED, MP}                                      (3.1)
                                
where 
 
      P is the set of seven places, P = {p50, p52, p54, p56, p58, p60, 
p62}; 
 
      T is the set of transitions, T ∩ P = ∅; 
 
      I, O, H : T → Bag(P), are the input, output and inhibition 
functions, respectively,  where Bag(P) is the multiset of P; 
 
      PAR is a set of parameters, such as PAR = {K}; 
 
      PRED is a set of predicates restricting parameter ranges, such as 
PRED = {K≥1}; 
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            MP :  P → IN U PAR is the function that associates with each 
place either a natural number or a parameter ranging on the set of 
natural numbers where MP associates the parameter K with p50, and 
the value 0 with all other places and where IN is the set of natural 
numbers: {0,1,2,3, …}; 
 
      Examples of the input, output, and inhibition functions are the 
following: I(t50) = {p50}, O(t50) = {p52}, H(t50) =  ∅ and, for 
example, O(t54.2) = {p58} and H(t54.2) = {p56}. 
 
      The PNs for the logic tables described in 2.2 and 2.3 above are in 
Fig. 2 and Fig. 3, respectively, where the numeric levels of the 
chained logic tables are designated as dimensions. 
 
 
     K 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2.  PN for two logic tables (two dimensions) 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
         K   
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

p34 Task type numbers and switches

p42 Task type column number

p44 Transaction type numbers and switches

p52 Transaction type column number

p54 Account numbers and switches

p58 Arithmetic on account balance

p60 Arithmetic on running balance

p62 Time stamp

p30 Time type

p32 Time type column number

p56 Inhibit any
more queries

p46 Inhibit any
more queries

p36 Inhibit any
more queries

T40:  SQL insert task

T42: SQL query of task logic

T44.2: No
transactions

T62:  SQL update transaction

T50:  SQL insert transaction

T52: SQL query of transaction logic

T54.2:  SQL query of balance

T58:  SQL insert on account

T54.4:  No
  accounts

T60:  SQL update on balance

T30:  SQL insert time

T32:  SQL query of time logic

T32.2:  No
         tasks

T36.2:  Return to
    time type input

T46.2:  Return to
    task type input

T56.2:  Return to
 transaction input

p40 Task type

p42 Task type column number

p44 Transaction type numbers and switches

p52 Transaction type column number

p54 Account numbers and switches

p58 Arithmetic on account balance

p60 Arithmetic on running balance

p62 Time stamp

p56 Inhibit any
more queries

p46 Inhibit any
more queries

T40:  SQL insert task

T42: SQL query of task
l i

T44.2: No
transactions

T62:  SQL update transaction

T50:  SQL insert transaction

T52: SQL query of transaction
l i

T54.2:  SQL query of
b l

T58:  SQL insert on account

T54.4:  No
   accounts

T60:  SQL update on balance

T56.2:  Return to
 transaction input

T46.2:  Return to
   task type input

 
Fig. 3.  PN for three logic tables (three dimensions) 
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4. IMPLEMENTATION 

p44

{T50,
p52,
T52}

T44.2

{T40,
p42}

p40

T46.2p46

p54T54.2p56T56.2

{T54.2,p58,T58,
p60,T60,p62,T62}

      What follows from the PN design of chained logic table systems is 
how to abstract them into patterns and frameworks for generic reuse.  
To that end, the multiple levels of the logic tables described in 2.3 
above and in Fig. 3 are abstracted into the PN pattern in Fig. 4 for 
three dimensions.  The multiple levels of the logic tables described in 
2.2 above and in Fig. 2 are abstracted into the PN pattern in Fig. 5 for 
two dimensions.  The dotted area in Fig. 5 is shown in Fig. 6 as the 
abstract framework for logic table systems for N dimensions/levels.  
 

p34

{T40,
p42,
T42}

T32.2

{T30,
p32,
T32}

p30

T36.2p36

p54 T54.4 T56.2p56

p44

{T50,
p52,
T52}

T44.2p46T46.2

{T54.2,p58,T58,
p60,T60,p62,T62}

 
 

Fig. 4. Abstract PN pattern for three logic tables 
(three dimensions) from Fig. 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 5. Abstract PN pattern for two logic tables 
(two dimensions) from Fig. 2 

 
 

p44

T1.1:
{T50,
p52,
T52}

p54

T3.2

T2.1:
T54.4p56T3.1:

T56.2

a11:  N

a12: 1...N-1

a1: 2...N

a2: 2...N

a4: 1...N

a3: 1...N

a8 a7 a6

a5

a9a10

T3.2:{T54.2,p58,T58,p60,T60,p62,T62}

 
 

Fig. 6. Abstract PN framework for logic tables  
(N dimensions) from the dotted area in Fig. 5 
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      In Fig. 6, the directed arcs of a1:2…N and a2:2…N are labeled to 
show where the pattern of logic table system levels 2 through N 
connect to place p1.  The directed arcs of a3:1…N and a4:1…N show 
that levels 1 through N of the pattern are bounded by {p44, T3.1, 
T3.2, p54}.  The place p56 is a test and the equivalent condition in the 
SQL query where more rows remain to be processed as arc a8 or no 
rows remain as arc a10.  The dotted and directed arc of a12:1…N-1 
shows the pattern where levels 1 through N-1 connect.  The dotted and 
directed are of a11:N shows the pattern associated with level N. 
      A search of the literature for potential similarities in other PN 
patterns with inhibited arcs found Marsan (1995), Balbo (1985), and 
Couvreur (1994) which are described below, respectively, in Fig. 7 - 
Fig. 17, Fig. 18 - Fig. 30, and Fig. 31 - Figs. 33.  In the area of 
manufacturing, a Kanban cell is shown in Fig. 7-Fig. 11, and a flexible 
manufacturing system [FMS] is shown in Fig. 12-Fig. 17. 
      A Kanban cell is the production part of a linear pull system based 
on the just in time [JIT] method of control to minimize the size and 
change of inventory.    
      Figure 7 is a Kanban cell after Marsan (1995, Fig. 88) which can 
fail with a failure subnet {m6, t6, m7, t7, and inhibited arc to t2} and 
with an idle subnet {t3, m5, t2}. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Model of a Kanban cell with failure and idle subnets 
after Marsan (1995, Fig. 88) 

   
 
 
 
 
 
 
 
 
 
 
 
 
 

      Figure 8 redraws Fig. 7 with the transition t2 and the failure subnet 
at the bottom.   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

m1

m2

m3

m4

m5

m6

m7
t1

t2

t3

t4

t7

t6

m1

m2

m3

m4

m5

m6

m7
t1

t2

t3

t4

t7

t6  
Fig. 8. Redrawn Kanban cell, identical to Fig. 7 

 
 
      Figure 9 expands the size of the failure subnet and reduces the 
main net {m3, t2} while retaining the idle subnet now {m5, t2, m5}. 
 
 

m3

m5

m6

m7

t2

t7

t6

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Reduced Kanban cell from Fig. 8 
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      Figure 10 suppresses the idle subnet and looks similar to the 
abstract PN framework for logic tables in Fig. 6 on the following 
basis.   In Fig. 10 the construct {m7, t7, m6} passes by place m3 in 
contrast to the equivalent construct in Fig. 6 of {p44, T1.1, p54, T2.1} 
which does not pass by p54, the equivalent of place m6.  Figure 10 is 
also identical to the elementary net system with inhibitor arc [ENI] of 
Janicki (1995, Fig. 4(a)).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Kanban cell of Fig. 9 with idle subnet suppressed 
and similar to the abstract PN framework  

for logic tables in Fig. 6 
 
 
      Figure 11 transforms Fig. 10 by connecting the failure subnet {m7, 
t7, m6, t6} into the main net {m3, t2, m3} at place m3 by  forcing 
transition t7 into place m3.  The reason for this follows.  To simulate 
Fig. 10 correctly requires placing a token in place m7 and in place m3, 
that is, two tokens are required.  However, it is possible to make a PN 
which simulates correctly with only one token a Kanban cell which 
can fail.  Such is Fig. 11 where the failure subnet is connected directly 
into the main net at m3, the only place in the main net.  Hence Fig. 11 
is identical to the abstract PN framework for logic tables in Fig. 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Kanban cell of Fig. 10 with failure subnet 
connected into the main net and identical to the abstract 

PN framework for logic tables in Fig. 6 
 

 
 
 
 
 
 
 

      FMS is a push production system using pallets to load incomplete 
parts and to unload completed parts by continuous transportation such 
as conveyer or  by automatic guided vehicle [AGV].   
      Figure 12 is an FMS with AGV transport as a generalized 
stochastic Petri net [GSPN] after Marsan (1995, Fig. 99).   There are 
four inhibited arcs between places {m5, m8}, {m6, m21}, {m28, 
m21},  {m29, m8}.  There are two idle subnets with places {m17, 
m18, m17} and {m17, m23, m17}.  
 

 

m3m6

m7

t2

t7

t6

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

m18

m29

m28

m26

m23

m22

m21 m20

m17

m16

m15

m8m7 m6

m5

m3m6

m7

t2

t7

t6 t3_new

 
 

Fig. 12. GSPN model of a FMS with AGV transportation 
system after Marsan (1995, Fig. 99) 
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      Figure 13 reduces Fig. 12 and moves to the bottom the place m21 
of the two inhibited arcs and places {m6, m21}and {m28, m21}. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. Reduced GSPN model from Fig. 12 
 
 
      Figure 14 reduces Fig. 13 by removing the idle subnets and is 
identical to the abstract PN framework for logic tables in Fig. 6. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 14. Reduced GSPN model from Fig. 13 and identical   
to the abstract PN framework for logic tables in Fig. 6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      Figure 15 reduces Fig. 13 and moves to the bottom the place m8 of 
the two inhibited arcs and places {m29, m8} and {m5, m8}. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

m5 m6

m7

m8

m20

m21

m22m23m26

N

m28 m29m18m18 m29m28 m26

N

m23 m22

m21

m20

m17 m8

m7

m6m5

m29m28

m20

 
 

Fig. 15. Reduced GSPN model from Fig. 13 
 
 

      Figure 16 reduces Fig. 15 by suppressing the two inhibited arcs 
associated with place m21, namely {m6, m21} and {m28, m21}.  
 
 
 
 
 
 
 
 
 
 
 
 

m5 m6

m7

m8

m22m23m26

N

 
Fig. 16. Reduced GSPN model from Fig. 15 
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      Figure 17 reduces Fig. 16 and is identical to Fig. 14 and to the 
abstract PN framework for logic tables in Fig. 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 17. Reduced GSPN model from Fig. 16 and identical 
to the abstract PN framework for logic tables in Fig. 6 

 
 
      In the area of software analysis, product-form queueing networks 
[PFQNs] provide models for analyzing performance where the 
numerical solution process, while although completely automated, 
becomes clearer with the help of  GSPNs.  A PFQN compact model is 
in Fig. 18-Fig. 23, and a PFQN lower-bound model is in Fig. 24-Fig. 
30. 
      Figure 18 is a GSPN model of a PFQN compact model after Balbo 
(1985, Fig. 6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 18. GSPN model of a PFQN compact model  
after Balbo (1985, Fig. 6) 

 
 
 
 
 
 
 

      Figure 19 is the subnet {m1, m2, m4, m6, m1} on the lower half 
of Fig. 18. 
 
 

m5 m6

m7  
 
 
 
 
 
 
 
 
 

m1 m2

m6 m4

 
Fig. 19. Lower half subnet of the GSPN model from Fig. 18 

 
 
      Figure 20 redraws Fig. 19 using place m6 as the inhibited arc of 
interest. 
 
 

m1

m2m6

m4

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 20. Redrawn GSPN model from Fig. 19 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

m1 m2

m5

m6

m3

m4
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      Figure 21 reduces Fig. 20 and is similar to the abstract PN 
framework for logic tables in Fig. 6.  The difference is that here the 
return loop is {m2, m1} rather than the equivalent {m2, m2) or {p54, 
T3.2} in Fig. 6.  This difference is described in terms of the SQL code 
in Fig. 3 as abstracted in Fig. 6.  Fig. 21 processes one account 
number at place m2 (or p54 in Fig.3 and Fig. 6), but then instead of 
checking for more account numbers to process in m2 goes back to get 
another transaction  at place m1 (or p44).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 21. Reduced GSPN model from Fig. 20 and similar 
to the abstract PN framework for logic tables in Fig. 6 
 
 
      Figure 22 transforms Fig. 21 by moving the return loop {m2, m1} 
into {m2, m2} because there is no branching between places m1 and 
m2.  In Fig. 19, this changes the directed arcs {m2, m1} into the 
directed arcs {m2, m2}.  Hence Fig. 22 is identical to the abstract PN 
framework for logic tables in Fig. 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 22.  Transformed GSPN model from Fig. 21  
and identical to the abstract PN framework  

for logic tables in Fig. 6 
 
 
 
 
 
 
 
 
 
 
 

      Figure 23 redraws Fig. 19 using place m4 as the inhibited arc of 
interest (rather than m6 as in Fig. 20). 
 
 
 

m1

m2

m6

m4

 
 
 
 
 

m1

m2m6

 
 
 
 
 
 
 
 
 
 

 
Fig. 23. Another redrawn GSPN model from Fig. 19 

 
 
      Figure 24 reduces Fig. 23 and is similar to the abstract PN 
framework for logic tables in Fig. 6. 
 
 

m1

m2m4

 
 
 
 
 

m1

m2m6

 
 
 
 
 
 
 

Fig. 24. Reduced GSPN model from Fig. 23 and similar 
to the abstract PN framework for logic tables in Fig. 6 
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      Figure 25 transforms Fig. 24 by moving the return loop {m2, m1} 
into {m2, m2} because there is no branching between places m1 and 
m2.  Hence Fig. 25 is identical to the abstract PN framework for logic 
tables in Fig. 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 25. Transformed GSPN model from Fig. 24  

and identical to the abstract PN framework  
for logic tables in Fig. 6 

 
 
      Figure 26 is a GSPN model of PFQN lower-bound model after 
Balbo (1985, Fig. 7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 26. GSPN model of a PFQN lower-bound model after 
Balbo (1985, Fig. 7) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

      Figure 27 is the subnet {m6, m1, m2, m3, m4, m1} in the lower 
half of Fig. 26. 
 
 
 m1 m2 m3 m4

m6

 
m1

m2m4

 
 
 
 
 
 
 
 
Fig. 27. Lower half subnet of the GSPN model from Fig. 26 

 
 
      Figure 28 redraws Fig. 27 using place m6 as the inhibited arc of 
interest. 
 
 

m1

m2 m3

m4

m6

 
 
 
 
 
 
 

m1 m2 m3 m4

m5

m6

 
 
 
 
 
 
 
 

Fig. 28. Redrawn GSPN model from Fig. 27 
 
 
      Figure 29 reduces Fig. 28 and is similar to the abstract PN 
framework for logic tables in Fig. 6. 
 
 
 m1

m2m6

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 29. Reduced GSPN model from Fig. 28 and similar 
to the abstract PN framework for logic tables in Fig. 6 
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      Figure 30 transforms Fig. 29 by moving the return loop {m2, m1} 
in Fig. 29 into {m2, m2} in Fig. 30 because there is no branching 
between places m1 and m2. In Fig. 27, this changes the directed arcs 
{m2, m1} into the directed arcs {m2, m2}. Hence Fig. 30 is identical 
to the abstract PN framework for logic tables in Fig. 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 30. Transformed GSPN model from Fig. 29 and 
identical to the abstract PN for logic tables in Fig. 6 

 
 
       In the area of validating models with invariants, the classic 
example of a communications protocol is in Fig. 31 - Fig. 33. 
      Figure 31 is an alternate bit protocol model after Couvreur (1994, 
Fig. 7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 31.  Alternate bit protocol model  
after Couvreur (1994, Fig. 7)  

 
 
 
 

       Figure 32 reduces the alternate bit protocol model from Fig. 31 
and is similar to the abstract PN framework for logic tables in Fig. 6.  
 
 

m2 m3

m11

m12 
 
 

m1

m2m6

 
 
 
 
 
 
 
 
 
 
Fig. 32. Reduced alternate bit protocol model from Fig. 31 

and not identical to the abstract PN framework  
for logic tables in Fig. 6  

 
 
      Figure 33 transforms the alternate bit protocol model from Fig. 32 
by moving the return loop { m3, m11} in Fig. 32 into { m3, m3} in 
Fig. 33 because there is no branching between places m3 and m11.  
Hence Fig. 33 is identical to the abstract PN framework for logic 
tables in Fig. 6. 
 
 

m1 m2

m3

m4 m5

m6m7

m8

m9 m10

m11m12

m13 m14

m15m16

m2 m3

m12 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 33. Transformed alternate bit protocol model from  
Fig. 32 and identical  to the abstract PN framework  

for logic tables in Fig. 6 
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      Another lesson learned is that the production of this paper 
underscores the dire need for better quality PN tools which are more 
readily available, less expensive than, and not bound to the Un*x / 
Sun environments.  

CONCLUSION 
      This paper shows the exact processes of: how logic tables are 
chained to implement complex accounting and manufacturing 
systems; how to map such systems into PNs; how a common pattern 
was discovered which lead to a framework for reuse; and how that 
framework was further observed in existing examples of Kanban, 
FMS, and PFQN in the literature. 
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layers, such as those in the guise of middleware, and to avoid libraries 
of components, such as those in the guise of reusable objects and 
classes in procedural languages, through the use of complex logic 
tables in relational database engines.  By extension, object technology 
has not kept its promise for programming by contract (to avoid errors 
as early as possible through invariants) or for reuse (to avoid 
reinvention through portable, generic components).  The only place 
where object technology has helped is to generalize and abstract 
problem domains to the point where solution domains become 
obvious.   On the other hand, RDBMS technology has enabled 
programming by contract (through a perfect mathematical data model) 
and realized reuse (through SQL as the simplest, most portable, and 
most ubiquitous ANSI language). 
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