
 1 of 20

Recent Advances in External Sorting

C. James1

Abstract

A recent advancement in external sorting is the

radix hash sort. It combines radix sorting with perfect

hashing as implemented in a single linked list. The

performance of radix hash for disk to disk operations is

65% faster for any key size than the nearest published

method which is the distribution counting sort named

Algorithm 5.2.D of D. E. Knuth, as adapted here for

external sorting. For radix hash, the hash size of 2-bytes is

better for sorting less than about 2 million keys, and the

1 Principal Scientist, CEC Services, LLC, 1613 Morning Dr, Loveland
CO 80538-4410, Cell: 719.210.9534, Fax: 970.593.1350,
RadixHashSort@CEC-Services.com

 2 of 20

hash size of 3-bytes is better for sorting more. The source

code for the sorting methods is included in True BASIC®.

Introduction

External sorting, also known as disk-to-disk

sorting, is necessary when the keys to be sorted can not fit

into memory. The usual approach is to modify some

internal sort, or memory-to-memory sort, for external

sorting. This paper describes a recent advance in external

sorting named the radix hash sort. It combines the

features of radix sorting with perfect hashing.

Radix sorts from right to left, from the least

significant position to the most significant position within

a key. An example of radix sorting uses the limited

character set of the decimal numbers zero through nine to

sort monetary amounts. Radix sorts the right most

 3 of 20

decimals or cents positions then proceeds to sort the

leftmost, non decimal or dollar positions.

Hash sorting maps a key into a location in a hash

table where multiple keys may map to the same location

and hence collide. Perfect hash sorting avoids the

collision by mapping each possible key into a unique

location in a hash table or file.

Problem Statement

If multiple records with the same sort key map to

the same hash location, how are records tabulated as

different records with the same key. A solution is to allow

the size of the location to grow infinitely to accommodate

an ever increasing number of records hashed there. For

internal sorting, this may be implemented in computer

memory by catenating the record numbers in order.

 4 of 20

However, this requires rewriting the location of the

memory string each time a record is added. This operation

is resource costly and time consuming. A solution that

avoids rewriting the same location is to expand new

locations as needed into free space already reserved by

using pointer links. This method is known as a linked list.

A linked list may link backward or forward as a single

linked list, or may link both backward and forward as a

double linked list.

Approach and Techniques

To implement perfect hashing for radix sorting, a

single linked list is chosen that links only forward. In

order to locate where the next new record is added, the list

may be read from beginning to end. A faster method is for

any hash value to store a pointer to the next available

 5 of 20

location for the link to a new record. This pointer is stored

twice. It is stored in the hash table at the hash key index

as the link from the last record accessed for that hash key.

The pointer is also stored in another table as the last link

associated with that hash key. This other table is named

the next record update (NRU) table. What follows is how

the NRU table and the hash table are logically constructed.

Given a hash key with a size of 2-bytes, the index

range for hash values is 0 through 65535. For each of the

respective hash values, the next record available is stored.

The NRU table thus contains 65536 entries with pointers

to the respective next available records in the hash table.

The NRU table is initialized by hash index to the

respective value of that hash index. Record 1 of the NRU

table is indexed as 0 with a value of 1 to point to record 1

 6 of 20

in the hash table. Record 65535 of the NRU table is

indexed as 65535 with a value of 65536 to point to record

65536 in the hash table.

The hash table entry contains two data, the record

number of the key sorted and a link in the hash table to the

next available record location. This implies that the

number of the entries in the hash table is the number of

possible hash keys plus N entries for the N keys to be

sorted. Therefore the number of keys to be sorted should

be known, or determined, before the sorting begins.

Here is an example of how the NRU table and the

hash table interact. When hash value 2 is encountered for

the first time as the first key in the input file, the NRU

table is accessed at index position 2 which points to record

3 in the hash table. An NRU counter beginning at 65536

 7 of 20

is incremented to 65537. It is stored as the last updated

record link in the NRU table at index position 2. In the

hash table at record 3, the pointer is updated to the key

index for the input file, and the associated link for the next

free record in the hash table is also updated to 65537.

Record 65537 in the hash table is a record containing

values of zero. Therefore if the value of the link record is

zero then that record terminates the hash chain. If the

value of the link record is not zero then that record points

to the next sorted key of the input file in the hash chain.

What remains is how to terminate the linked list

when it is traversed. The answer is to rely on a blank

record as the sentinel record. When a hash record links to

a blank record, the last linked record was obtained.

Therefore the hash table also contains a number of blank

 8 of 20

sentinel records to equal the number of hash values to sort.

This makes the total number of entries in the hash table as

65536 plus the N keys to sort. The hash table is initialized

to zero.

After the keys to be sorted are hashed, it is

necessary to construct a table of sorted pointers. This

table is initialized by index to the respective input record

number to be sorted as 1 through n. For example, sort key

index 1 is initialized to value 1, sort key index 2 is

initialized to value 2, and sort key index N is initialized to

value n. For the first hash pass, this table serves as the

index to the input file of keys. After each hash pass, this

table of sorted pointers is subsequently updated and serves

also as the next index to the input file of keys to be sorted.

 9 of 20

To evaluate the performance of radix hash sorting,

the algorithm was programmed to make all table accesses

to and from files on disk. The implementation was not

programmed in MMIX assembly language so as to obtain

live, empirical sorting results more easily from a higher

level programming language that is dependent on the

current load of computer hardware and operating systems

as implemented or used by a casual tester. Programming

was in True BASIC®. The nearest published algorithm to

radix hash is the distribution counting sort known as

Algorithm 5.2.D (Knuth 1998). That algorithm was also

programmed to sort externally as disk-to-disk.

For both sorts, files were initialized or re-

initialized as needed with one read from a clear file and

one write to a sort file. The clear files were preloaded.

 10 of 20

The time to build the clear files was not included in the

tabulation of performance times.

Results

For about 16 million or 2 ^ 24 keys of any length

with a hash size of 2-bytes, external radix hash performs

65% faster than external 5.2.D. Table 1 has the

performance data in time units * 1000. The graph of

performance in Figure 1 shows that radix hash is the lower

curve. Both sorts are linear in time. The graph of

logarithmic performance in Figure 2 shows both sorts are

parallel. The sorts processed an input key of 4-bytes,

meaning that two passes were required to sort with the 2-

byte hash key. The source code for the two sorts are

included as Program Listing 1 and 2.

 11 of 20

 What remains is to analyze the performance

results from increasing the byte length of the keys to be

sorted and from increasing the byte size of the hash key.

To test an increase in length of the key to be

sorted, a hash size of 2-bytes and N = 2 ^ 19 or about 500,

000 records are chosen arbitrarily. From Table 1 with the

length of the key of 4-bytes and from Table 2 with the

length of the key of 6-bytes, radix hash and Algorithm

5.2.D perform about 50% slower with a 6-byte key than

with a 4-byte key. This is to be expected because the

graphs of both sorts appear linear.

To test an increase in length of the hash key, a hash

size of 3-bytes was chosen because of testing limitations

due to hard disk size. A three byte hash size contains

values in the range of 0 to (256 ^ 3) – 1 or about 16

 12 of 20

million. Each hash value indexes a hash record that

contains two pointer links in the IEEE 8-byte numeric

string format for a total of 16-bytes per hash value. For

radix hash of N keys to be sorted, to initialize the hash file

requires a clear file that is (N + (256 ^ 3) – 1) * 16 bytes.

For N = 2 ^ 22 keys to be sorted, the clear file size is

therefore about 320 MB. A 4-byte hash size contains

values in the range of 0 to (256 ^ 4) – 1 or about 4 GB.

The clear file size for N = 4 MB is about 64 GB. By

contrast to the 3-byte hash size, the 4-byte hash size is thus

impractical to test or to use.

Table 3 shows that with a 3-byte hash key,

Algorithm 5.2.D performs worse than its 2-byte hash key

for about N = 2 ^ 19 or 0.5 million keys. By contrast

Table 3 shows that with a 3-byte hash key, radix hash

 13 of 20

performs better than its 2-byte hash key at about N > 2 ^

21. Therefore radix hash with a 2-byte hash key is better

suited to sorting keys that number less than 2 million.

Future Directions

Planned enhancements to the radix hash sort are

due to appear as a commercial product in 2006 under the

product name of RadixHash™.

Acknowledgments

Thanks are due to Professor Emeritus Donald E.

Knuth of Stanford University for pointing out that the

original presentation of radix hash sorting (James 2005)

was very similar in theory to that of Algorithm 5.2.D.

References

James 2005

 14 of 20

James, C. Statistical Analysis of the Relative

Strength of Chess Positions. Pattern Recognition

and Image Analysis. 2005. Vol. 15. No. 3. pp. 609-

613.

Knuth 1998

Knuth, D. E. The Art of Computer Programming.

2nd ed. Reading MA: Addison-Wesley. 1998. pp.

78-9, 176-177.

 15 of 20

(The following Figures are for two columns only.)

Figure 1. Performance of Radix Hash and Algorithm 5.2.D.

 16 of 20

Figure 2. Logarithmic performance of Radix Hash and Algorithm 5.2.D.

 17 of 20

(The following Tables are for one column only.)

 Table 1. Sort performance for Radix Hash Algorithm 5.2.D
 with key length of 4-bytes and hash size of 2-bytes.

N =
(2 ^ x) - 1

Radix
hash

Algorithm
5.2.D.

5 2828 7562
6 2797 7610
7 2859 7687
8 2907 7781
9 3078 7985

10 3328 8468
11 4000 9438
12 5422 11391
13 7937 15375
14 13125 23250
15 23469 39109
16 44609 70984
17 85953 135813
18 169281 266344
19 343047 528859
20 683281 1050672
21 1364063 2095656
22 2725609 4186719
23 5449141 8388607
24 10897203 16772781

 18 of 20

 Table 2. Sort performance for Radix Hash and Algorithm
 5.2.D with key length of 6-bytes for hash size of
 2-bytes and of 3-bytes.

Hash size of 2-bytes Hash size of 3-bytes
N =
(2 ^ x) - 1

Radix
hash

Algorithm
5.2.D

Radix
hash

Algorithm
5.2.D

19 518859 812047 1065593 2471641
20 1032079 - 1390906 -
21 2058750 - 2079437 -
22 4112734 - 3449953 -

 19 of 20

(The following Listings are for one column only.)

Program Listing 1. Radix hash with single linked list as external disk-to-disk.

Note: The acronym in the paper NRU (next record updated) means the same thing as the
acronym LRU (last record updated) in the source code below.

[available on request to RadixHash@CEC-Services.com]

 20 of 20

Progrmming Listing 2. Algorithm 5.2.D. as external disk-to-disk.
Note: The acronym in the paper NRU (next record updated) means the same thing as the
acronym LRU (last record updated) in the source code below.

[available on request to RadixHash@CEC-Services.com]

	Abstract
	Introduction
	Problem Statement

	Approach and Techniques
	Results
	Future Directions
	Acknowledgments

