

RECENT ADVANCES IN LOGIC TABLES FOR
REUSABLE DATABASE ENGINES

Colin James III
CEC Services, LLC
1613 Morning Dr

Loveland, Colorado 80538-4410 USA
(970) 622-0466, (970) 622-0177 (fax), cjames@cec-services.com

ABSTRACT
 Report Accounts [RA] is a very fast reusable database engine for
accounting arithmetic implemented in 10-tables and less than 25-lines
of ANSI SQL code. RA has been generalized into abstract engines for
process engineering and flexible manufacturing systems [FMS].
 Recent advances are:
 1. How to chain logic tables for multi-level design of complex
systems.
 2. How to map a database engine with multi-level logic tables into
a Petri Net [PN].
 3. How to recognize patterns in such PNs for reuse as frameworks
in other systems.
 4. How to recognize frameworks in Kanban, FMS, and product-
form queueing networks [PFQN].

INTRODUCTION
 This paper is divided into six parts: 1. Summary of previous work;
2. Analysis; 3. Design; and 4. Implementation.

1. SUMMARY OF PREVIOUS WORK
 The previous work below is summarized from James (1998) and
from recent results.
 For Report Accounts [RA], the problem domain was determined
through analysis from the requirements from which the design of the
solution domain became obvious for implementation. Business
Object Notation [BON] was used for analysis and design, and
relational database management systems [RDBMS] technology was
used for implementation. BON determined and isolated the
components of attributes, objects, and classes. These in turn were
mapped on a one to one basis directly into the respective columns,
rows, and tables of RDBMS technology. The mapping process was
intuitive, seamless, and reversible and quite unlike the current
methodological tools for computer aided software engineering
[CASE] which promised but could not deliver the same.

 The specific requirements for RA were a database engine for
accounting arithmetic to support:
1.1.1. Bookkeeping with user specified logic such as double- and

triple-entry bookkeeping using credits [cr], debits [dr], and
trebits [tr]

1.1.2. Reporting of all financial instruments
1.1.3. Accountability to trace back all transactions, also known as

generally accepted accounting principles [GAP]
1.1.4. Portability to any major hardware / RDBMS platform
1.1.5. Maintainability in a ubiquitous ANSI computer language
1.1.6. Scalability of four billion potential concurrent users
1.1.7. Performance of not less than three seconds for the real time

commit of a complete accounting transaction
 The requirements were met or exceeded in these respective
implementations of RDBMS technology:
1.2.1. N-entry bookkeeping is achieved through a logic table

specified by the user where columns are transaction type
numbers and rows are the account numbers on which
respective switches are encoded with the type of arithmetic
operation.

1.2.2. Reporting is achieved with the same logic table but with
columns viewed in a separate numeric range as report type
numbers, rows as account numbers, and switches encoded
for the tab and row positions within a page and the type of
reporting arithmetic.

1.2.3. Accountability is achieved in table design. The transaction
table grows infinitely where truncations can not be altered
per se but may be reversed through another transaction, all
indexed to and from the accounts table.

1.2.4. Portability is achieved through RDBMS using ANSI
Structured Query Language [SQL] which is a database
access language as opposed to a procedural language. The
SQL code to access the logic table uses the SUBSTR
substring function which returns all row numbers specified
by switches present in the column number of interest. This
avoids reading each row in its entirety with the INSTR
instring function. The logic table design and SUBSTR

1

function implementation effectively coerce SQL to perform
the procedural processing inherent to accounting arithmetic.
Hence non-procedural SQL achieves the portability not
realized by procedural computer languages.

1.2.5. Maintainability is achieved with the design of only ten
tables and implemented in less than 25-lines of ANSI SQL
code.

1.2.6. Scalability is achieved by the choice of the RDBMS
vendor. Currently IBM DB2 supports the maximum
number of concurrent users.

1.2.7. Performance is achieved by table design and by the choice
of the RDBMS vendor. RA is implemented in a minimum
number of ten tables. The accounts table contains all
account entries. A separate table for account balances
contains one row respectively for the current running
balance of each account number to ensure fast lookup. The
relative performance of RA by vendor is currently as
follows: IBM DB2 is 24-times faster than ORACLE; and
CA OpenIngres is 6-times faster than ORACLE. Sybase
and Informix were not tested due to extreme difficulties in
obtaining those products with or without support.

2. ANALYSIS
 This section describes how to stack or chain logic tables to
perform multiple processes or operations on different levels.
 2.1. RA uses a logic table of columns as transaction type numbers,
of rows as account numbers, and of switches as the desired arithmetic
operation of cr, dr, tr, or blank for none. The user specifies a
transaction type number to access the logic table. That transaction
type number is associated with a column, either directly by columnar
position or indirectly by an index. That column is searched for any
switches not set to blank. Those switches found then designate the
particular rows and associated account numbers to which the
transaction amount is applied as either cr, dr, or tr. Thus a single
transaction selects multiple accounts.
 2.2. We index the logic table in 2.1 above with a logic table for
tasks where columns are task type numbers, rows are transaction type
numbers, and switches are Boolean flags. Thus a single task selects
multiple transactions which in turn select multiple accounts.
 2.3. We also index the logic table in 2.2 above with a logic table of
times where columns are time types, rows are task type numbers, and
switches are Boolean flags. Thus a single time selects multiple tasks
which in turn select multiple transactions and accounts.
 2.4. We generalize the indexing of the logic tables in 2.1-2.3
above into abstract logic tables of level N. Thus a single operation at
level N selects multiple operations at level N-1 which in turn select
multiple operations at level N-2, at level N-3, …, and at Level N-(N-
1) or Level 1.
 The processes designated as columnar major in the respective
logic tables above are times, tasks, and transactions. Other processes
and operations may also be designated depending on the area of
interest. For example in manufacturing, the columns in ascending
order of level may be parts, inventories, assembly lines, shifts, work
days, deadlines, projects, and systems. To abstract further, for
example in computer science, the columns in ascending order of level
may be neural networks, fuzzy logics, artificial intelligences, genetic
algorithms, self-teaching systems, and self-replicating universes.

3. DESIGN
 What follows from the analysis above is the necessity to capture
the levels of chained logic tables into a graphical network hierarchy
for discussion, manipulation, and simulation. To that end the Petri
Net [PN] is an available tool.
 The PN for RA and the logic table of 2.1 above is in Fig. 1.

 K

p50 Transaction type (and amount)

p52 Transaction type column number

p54 Account numbers and switches

p58 Arithmetic on account balance

p60 Arithmetic on running balance

p62 Time stamp

p56 Inhibit any more queries

T50: SQL insert transaction

T52: SQL query of transaction logic

T54.2: SQL query of balance

T58: SQL insert on account

T60: SQL update on balance

T62: SQL update transaction

T56.2: Return to user input

T54.4: No accounts

Fig 1. PN engine for one logic table

 The mathematical definition of the PN in Fig. 1 is after Marsan
(1995) below:

Definition. A PN model is an 8-tuple

 М = {P, T, I, O, H, PAR, PRED, MP} (3.1)

where

 P is the set of seven places, P = {p50, p52, p54, p56, p58, p60,
p62};

 T is the set of transitions, T ∩ P = ∅;

 I, O, H : T → Bag(P), are the input, output and inhibition
functions, respectively, where Bag(P) is the multiset of P;

 PAR is a set of parameters, such as PAR = {K};

 PRED is a set of predicates restricting parameter ranges, such as
PRED = {K≥1};

 2

 MP : P → IN U PAR is the function that associates with each
place either a natural number or a parameter ranging on the set of
natural numbers where MP associates the parameter K with p50, and
the value 0 with all other places and where IN is the set of natural
numbers: {0,1,2,3, …};

 Examples of the input, output, and inhibition functions are the
following: I(t50) = {p50}, O(t50) = {p52}, H(t50) = ∅ and, for
example, O(t54.2) = {p58} and H(t54.2) = {p56}.

 The PNs for the logic tables described in 2.2 and 2.3 above are in
Fig. 2 and Fig. 3, respectively, where the numeric levels of the
chained logic tables are designated as dimensions.

 K

Fig. 2. PN for two logic tables (two dimensions)

 K

p34 Task type numbers and switches

p42 Task type column number

p44 Transaction type numbers and switches

p52 Transaction type column number

p54 Account numbers and switches

p58 Arithmetic on account balance

p60 Arithmetic on running balance

p62 Time stamp

p30 Time type

p32 Time type column number

p56 Inhibit any
more queries

p46 Inhibit any
more queries

p36 Inhibit any
more queries

T40: SQL insert task

T42: SQL query of task logic

T44.2: No
transactions

T62: SQL update transaction

T50: SQL insert transaction

T52: SQL query of transaction logic

T54.2: SQL query of balance

T58: SQL insert on account

T54.4: No
 accounts

T60: SQL update on balance

T30: SQL insert time

T32: SQL query of time logic

T32.2: No
 tasks

T36.2: Return to
 time type input

T46.2: Return to
 task type input

T56.2: Return to
 transaction input

p40 Task type

p42 Task type column number

p44 Transaction type numbers and switches

p52 Transaction type column number

p54 Account numbers and switches

p58 Arithmetic on account balance

p60 Arithmetic on running balance

p62 Time stamp

p56 Inhibit any
more queries

p46 Inhibit any
more queries

T40: SQL insert task

T42: SQL query of task
l i

T44.2: No
transactions

T62: SQL update transaction

T50: SQL insert transaction

T52: SQL query of transaction
l i

T54.2: SQL query of
b l

T58: SQL insert on account

T54.4: No
 accounts

T60: SQL update on balance

T56.2: Return to
 transaction input

T46.2: Return to
 task type input

Fig. 3. PN for three logic tables (three dimensions)

 3

4. IMPLEMENTATION

p44

{T50,
p52,
T52}

T44.2

{T40,
p42}

p40

T46.2p46

p54T54.2p56T56.2

{T54.2,p58,T58,
p60,T60,p62,T62}

 What follows from the PN design of chained logic table systems is
how to abstract them into patterns and frameworks for generic reuse.
To that end, the multiple levels of the logic tables described in 2.3
above and in Fig. 3 are abstracted into the PN pattern in Fig. 4 for
three dimensions. The multiple levels of the logic tables described in
2.2 above and in Fig. 2 are abstracted into the PN pattern in Fig. 5 for
two dimensions. The dotted area in Fig. 5 is shown in Fig. 6 as the
abstract framework for logic table systems for N dimensions/levels.

p34

{T40,
p42,
T42}

T32.2

{T30,
p32,
T32}

p30

T36.2p36

p54 T54.4 T56.2p56

p44

{T50,
p52,
T52}

T44.2p46T46.2

{T54.2,p58,T58,
p60,T60,p62,T62}

Fig. 4. Abstract PN pattern for three logic tables
(three dimensions) from Fig. 3

Fig. 5. Abstract PN pattern for two logic tables
(two dimensions) from Fig. 2

p44

T1.1:
{T50,
p52,
T52}

p54

T3.2

T2.1:
T54.4p56T3.1:

T56.2

a11: N

a12: 1...N-1

a1: 2...N

a2: 2...N

a4: 1...N

a3: 1...N

a8 a7 a6

a5

a9a10

T3.2:{T54.2,p58,T58,p60,T60,p62,T62}

Fig. 6. Abstract PN framework for logic tables
(N dimensions) from the dotted area in Fig. 5

 4

 In Fig. 6, the directed arcs of a1:2…N and a2:2…N are labeled to
show where the pattern of logic table system levels 2 through N
connect to place p1. The directed arcs of a3:1…N and a4:1…N show
that levels 1 through N of the pattern are bounded by {p44, T3.1,
T3.2, p54}. The place p56 is a test and the equivalent condition in the
SQL query where more rows remain to be processed as arc a8 or no
rows remain as arc a10. The dotted and directed arc of a12:1…N-1
shows the pattern where levels 1 through N-1 connect. The dotted and
directed are of a11:N shows the pattern associated with level N.
 A search of the literature for potential similarities in other PN
patterns with inhibited arcs found Marsan (1995), Balbo (1985), and
Couvreur (1994) which are described below, respectively, in Fig. 7 -
Fig. 17, Fig. 18 - Fig. 30, and Fig. 31 - Figs. 33. In the area of
manufacturing, a Kanban cell is shown in Fig. 7-Fig. 11, and a flexible
manufacturing system [FMS] is shown in Fig. 12-Fig. 17.
 A Kanban cell is the production part of a linear pull system based
on the just in time [JIT] method of control to minimize the size and
change of inventory.
 Figure 7 is a Kanban cell after Marsan (1995, Fig. 88) which can
fail with a failure subnet {m6, t6, m7, t7, and inhibited arc to t2} and
with an idle subnet {t3, m5, t2}.

Fig. 7. Model of a Kanban cell with failure and idle subnets
after Marsan (1995, Fig. 88)

 Figure 8 redraws Fig. 7 with the transition t2 and the failure subnet
at the bottom.

m1

m2

m3

m4

m5

m6

m7
t1

t2

t3

t4

t7

t6

m1

m2

m3

m4

m5

m6

m7
t1

t2

t3

t4

t7

t6
Fig. 8. Redrawn Kanban cell, identical to Fig. 7

 Figure 9 expands the size of the failure subnet and reduces the
main net {m3, t2} while retaining the idle subnet now {m5, t2, m5}.

m3

m5

m6

m7

t2

t7

t6

Fig. 9. Reduced Kanban cell from Fig. 8

 5

 Figure 10 suppresses the idle subnet and looks similar to the
abstract PN framework for logic tables in Fig. 6 on the following
basis. In Fig. 10 the construct {m7, t7, m6} passes by place m3 in
contrast to the equivalent construct in Fig. 6 of {p44, T1.1, p54, T2.1}
which does not pass by p54, the equivalent of place m6. Figure 10 is
also identical to the elementary net system with inhibitor arc [ENI] of
Janicki (1995, Fig. 4(a)).

Fig. 10. Kanban cell of Fig. 9 with idle subnet suppressed
and similar to the abstract PN framework

for logic tables in Fig. 6

 Figure 11 transforms Fig. 10 by connecting the failure subnet {m7,
t7, m6, t6} into the main net {m3, t2, m3} at place m3 by forcing
transition t7 into place m3. The reason for this follows. To simulate
Fig. 10 correctly requires placing a token in place m7 and in place m3,
that is, two tokens are required. However, it is possible to make a PN
which simulates correctly with only one token a Kanban cell which
can fail. Such is Fig. 11 where the failure subnet is connected directly
into the main net at m3, the only place in the main net. Hence Fig. 11
is identical to the abstract PN framework for logic tables in Fig. 6.

Fig. 11. Kanban cell of Fig. 10 with failure subnet
connected into the main net and identical to the abstract

PN framework for logic tables in Fig. 6

 FMS is a push production system using pallets to load incomplete
parts and to unload completed parts by continuous transportation such
as conveyer or by automatic guided vehicle [AGV].
 Figure 12 is an FMS with AGV transport as a generalized
stochastic Petri net [GSPN] after Marsan (1995, Fig. 99). There are
four inhibited arcs between places {m5, m8}, {m6, m21}, {m28,
m21}, {m29, m8}. There are two idle subnets with places {m17,
m18, m17} and {m17, m23, m17}.

m3m6

m7

t2

t7

t6

m18

m29

m28

m26

m23

m22

m21 m20

m17

m16

m15

m8m7 m6

m5

m3m6

m7

t2

t7

t6 t3_new

Fig. 12. GSPN model of a FMS with AGV transportation
system after Marsan (1995, Fig. 99)

 6

 Figure 13 reduces Fig. 12 and moves to the bottom the place m21
of the two inhibited arcs and places {m6, m21}and {m28, m21}.

Fig. 13. Reduced GSPN model from Fig. 12

 Figure 14 reduces Fig. 13 by removing the idle subnets and is
identical to the abstract PN framework for logic tables in Fig. 6.

Fig. 14. Reduced GSPN model from Fig. 13 and identical
to the abstract PN framework for logic tables in Fig. 6

 Figure 15 reduces Fig. 13 and moves to the bottom the place m8 of
the two inhibited arcs and places {m29, m8} and {m5, m8}.

m5 m6

m7

m8

m20

m21

m22m23m26

N

m28 m29m18m18 m29m28 m26

N

m23 m22

m21

m20

m17 m8

m7

m6m5

m29m28

m20

Fig. 15. Reduced GSPN model from Fig. 13

 Figure 16 reduces Fig. 15 by suppressing the two inhibited arcs
associated with place m21, namely {m6, m21} and {m28, m21}.

m5 m6

m7

m8

m22m23m26

N

Fig. 16. Reduced GSPN model from Fig. 15

 7

 Figure 17 reduces Fig. 16 and is identical to Fig. 14 and to the
abstract PN framework for logic tables in Fig. 6.

Fig. 17. Reduced GSPN model from Fig. 16 and identical
to the abstract PN framework for logic tables in Fig. 6

 In the area of software analysis, product-form queueing networks
[PFQNs] provide models for analyzing performance where the
numerical solution process, while although completely automated,
becomes clearer with the help of GSPNs. A PFQN compact model is
in Fig. 18-Fig. 23, and a PFQN lower-bound model is in Fig. 24-Fig.
30.
 Figure 18 is a GSPN model of a PFQN compact model after Balbo
(1985, Fig. 6).

Fig. 18. GSPN model of a PFQN compact model
after Balbo (1985, Fig. 6)

 Figure 19 is the subnet {m1, m2, m4, m6, m1} on the lower half
of Fig. 18.

m5 m6

m7

m1 m2

m6 m4

Fig. 19. Lower half subnet of the GSPN model from Fig. 18

 Figure 20 redraws Fig. 19 using place m6 as the inhibited arc of
interest.

m1

m2m6

m4

Fig. 20. Redrawn GSPN model from Fig. 19

m1 m2

m5

m6

m3

m4

 8

 Figure 21 reduces Fig. 20 and is similar to the abstract PN
framework for logic tables in Fig. 6. The difference is that here the
return loop is {m2, m1} rather than the equivalent {m2, m2) or {p54,
T3.2} in Fig. 6. This difference is described in terms of the SQL code
in Fig. 3 as abstracted in Fig. 6. Fig. 21 processes one account
number at place m2 (or p54 in Fig.3 and Fig. 6), but then instead of
checking for more account numbers to process in m2 goes back to get
another transaction at place m1 (or p44).

Fig. 21. Reduced GSPN model from Fig. 20 and similar
to the abstract PN framework for logic tables in Fig. 6

 Figure 22 transforms Fig. 21 by moving the return loop {m2, m1}
into {m2, m2} because there is no branching between places m1 and
m2. In Fig. 19, this changes the directed arcs {m2, m1} into the
directed arcs {m2, m2}. Hence Fig. 22 is identical to the abstract PN
framework for logic tables in Fig. 6.

Fig. 22. Transformed GSPN model from Fig. 21
and identical to the abstract PN framework

for logic tables in Fig. 6

 Figure 23 redraws Fig. 19 using place m4 as the inhibited arc of
interest (rather than m6 as in Fig. 20).

m1

m2

m6

m4

m1

m2m6

Fig. 23. Another redrawn GSPN model from Fig. 19

 Figure 24 reduces Fig. 23 and is similar to the abstract PN
framework for logic tables in Fig. 6.

m1

m2m4

m1

m2m6

Fig. 24. Reduced GSPN model from Fig. 23 and similar
to the abstract PN framework for logic tables in Fig. 6

 9

 Figure 25 transforms Fig. 24 by moving the return loop {m2, m1}
into {m2, m2} because there is no branching between places m1 and
m2. Hence Fig. 25 is identical to the abstract PN framework for logic
tables in Fig. 6.

Fig. 25. Transformed GSPN model from Fig. 24

and identical to the abstract PN framework
for logic tables in Fig. 6

 Figure 26 is a GSPN model of PFQN lower-bound model after
Balbo (1985, Fig. 7).

Fig. 26. GSPN model of a PFQN lower-bound model after
Balbo (1985, Fig. 7)

 Figure 27 is the subnet {m6, m1, m2, m3, m4, m1} in the lower
half of Fig. 26.

 m1 m2 m3 m4

m6

m1

m2m4

Fig. 27. Lower half subnet of the GSPN model from Fig. 26

 Figure 28 redraws Fig. 27 using place m6 as the inhibited arc of
interest.

m1

m2 m3

m4

m6

m1 m2 m3 m4

m5

m6

Fig. 28. Redrawn GSPN model from Fig. 27

 Figure 29 reduces Fig. 28 and is similar to the abstract PN
framework for logic tables in Fig. 6.

 m1

m2m6

Fig. 29. Reduced GSPN model from Fig. 28 and similar
to the abstract PN framework for logic tables in Fig. 6

 10

 Figure 30 transforms Fig. 29 by moving the return loop {m2, m1}
in Fig. 29 into {m2, m2} in Fig. 30 because there is no branching
between places m1 and m2. In Fig. 27, this changes the directed arcs
{m2, m1} into the directed arcs {m2, m2}. Hence Fig. 30 is identical
to the abstract PN framework for logic tables in Fig. 6.

Fig. 30. Transformed GSPN model from Fig. 29 and
identical to the abstract PN for logic tables in Fig. 6

 In the area of validating models with invariants, the classic
example of a communications protocol is in Fig. 31 - Fig. 33.
 Figure 31 is an alternate bit protocol model after Couvreur (1994,
Fig. 7).

Fig. 31. Alternate bit protocol model
after Couvreur (1994, Fig. 7)

 Figure 32 reduces the alternate bit protocol model from Fig. 31
and is similar to the abstract PN framework for logic tables in Fig. 6.

m2 m3

m11

m12

m1

m2m6

Fig. 32. Reduced alternate bit protocol model from Fig. 31

and not identical to the abstract PN framework
for logic tables in Fig. 6

 Figure 33 transforms the alternate bit protocol model from Fig. 32
by moving the return loop { m3, m11} in Fig. 32 into { m3, m3} in
Fig. 33 because there is no branching between places m3 and m11.
Hence Fig. 33 is identical to the abstract PN framework for logic
tables in Fig. 6.

m1 m2

m3

m4 m5

m6m7

m8

m9 m10

m11m12

m13 m14

m15m16

m2 m3

m12

Fig. 33. Transformed alternate bit protocol model from
Fig. 32 and identical to the abstract PN framework

for logic tables in Fig. 6

 11

 Another lesson learned is that the production of this paper
underscores the dire need for better quality PN tools which are more
readily available, less expensive than, and not bound to the Un*x /
Sun environments.

CONCLUSION
 This paper shows the exact processes of: how logic tables are
chained to implement complex accounting and manufacturing
systems; how to map such systems into PNs; how a common pattern
was discovered which lead to a framework for reuse; and how that
framework was further observed in existing examples of Kanban,
FMS, and PFQN in the literature.

ACKNOWLEDGMENTS

 Janssens (1998) critiques Li (1994) for not producing a PN class
due to limitations in modeling procedural knowledge and which avoid
workflows. This paper addresses those objections by solving the
problems of modeling workflows and the resulting impedance
mismatch of procedural knowledge. The workflow model is reduced
to an abstract PN framework which may be chained and represents the
implementation of the procedural knowledge in its form of logic tables
which also may be chained. Hence the abstract PN framework of Fig.
6 is proposed as unique to model both workflow and procedural
knowledge at the same time. This new framework is one such study
to "realize systematic reuse in the workflow field" as suggested by
Janssens (1998). What follows is that a taxonomy is needed for the
classification and codification of patterns and frameworks in PNs.
Once a corpus of such components is assembled then some reuse may
be possible.

 Thanks are due for helpful comments to: Professor Gurdeep Singh
Hura, Department of Computer Science and Engineering, University
of Idaho at Idaho Falls, Idaho Falls, ID; Professor Gerrit Janssens,
Information Systems & Operations and Logistics Management,
University of Antwerp - RUCA, Antwerp, Belgium; and Professor
Houshang Masudi, Department of Mechanical Engineering, Prairie
View A&M University, Prairie View, TX.

REFERENCES
 Balbo, G., Bruell, S.C., and Ghanta, S., 1985, "Combining
Queueing Network and Generalized Stochastic Petri Net Models for
the Analysis of A Software Blocking Phenomenon", International
Workshop on Timed Petri Nets, Torino, Italy, pp. 208ff, IEEE
Computer Society Press, New York, New York. A lesson learned is that object technology helps to define the

problem domain by solving the analysis and design problem of
representing levels of related transaction processing, but that only
RDBMS technology can implement the solution domain in chained
logic tables. The mapping from object technology is on a one to one
basis directly into RDBMS technology. Hence there is no impedance
mismatch and no need for a fuzzy, object-relational layer as a wrapper
to abstract the relational database sufficiently for an object database to
access it. Therefore it is now possible to avoid object-relational
layers, such as those in the guise of middleware, and to avoid libraries
of components, such as those in the guise of reusable objects and
classes in procedural languages, through the use of complex logic
tables in relational database engines. By extension, object technology
has not kept its promise for programming by contract (to avoid errors
as early as possible through invariants) or for reuse (to avoid
reinvention through portable, generic components). The only place
where object technology has helped is to generalize and abstract
problem domains to the point where solution domains become
obvious. On the other hand, RDBMS technology has enabled
programming by contract (through a perfect mathematical data model)
and realized reuse (through SQL as the simplest, most portable, and
most ubiquitous ANSI language).

 Couvreur, J.M., Paviot-Adet, E., 1994, "New Structural Invariants
for Petri Net Analysis", Application and Theory of Petri Nets,
Proceedings of the 15th International Conference, Zaragoza, Spain, pp.
199-218, Springer-Verlag, Berlin, Germany.
 James, C., 1998, "A Reusable Database Engine for Accounting
Arithmetic", Proceedings of The Third Biennial World Conference on
Integrated Design & Process Technology, Vol. 2, pp. 25-30, Berlin,
Germany.
 Janicki, R., Koutny, M., 1995, "Semantics of Inhibitor Nets",
Information and Computation, Vol. 123, No. 1, pp. 1-16.
 Janssens, G.K., Verelst, J., Weyn, B., 1998, "Reuse-oriented
Workflow Modelling with Petri Nets", Workflow Management:Net-
based concepts, models, techniques, and tools, 19 th International
Conference on Application and Theory of Petri Nets, Lisboa, Portugal,
pp. 40-59.
 Li, J., Ang, J.S.K., Tong, X., Tueni, M., 1994, "AMS: A
Declarative Formalism for Hierarchical Representation of Procedural
Knowledge", IEEE Transactions on Knowledge and Data
Engineering, Vol. 6, No. 4, pp. 639-643.
 Marsan, M.A., Balgo, G., Conte, G., Donatelli, S., and
Franseschinis, G., 1995, Modelling with Generalized Stochastic Petri
Nets, John Wiley & Sons Ltd, West Sussex, England.

 12

